

Field Investigations Report

Barwon Water

Installation of new monitoring assets

FINAL

5 August 2016

Barwon Downs Monitoring Program

Project No:	VW07575
Document Title:	Installation of new monitoring assets
Document No.:	FINAL
Revision:	v2
Date:	5 August 2016
Client Name:	Barwon Water
Client No:	Client Reference
Project Manager:	Stephen Parsons
Author:	Louise Lennon, Nic Unland
File Name:	$\label{eq:likelihood} J:\label{eq:likelihood} J:\lab$

Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Floor 11, 452 Flinders Street Melbourne VIC 3000 PO Box 312, Flinders Lane Melbourne VIC 8009 Australia T +61 3 8668 3000 F +61 3 8668 3001 www.jacobs.com

© Copyright 2016 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This report has been prepared on behalf of, and for the exclusive use of Jacobs' Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

Document history and status

Revision	Date	Description	Ву	Review	Approved
Draft A	31/10/2014	Draft A	NU	SP	SP
Draft B	6/11/2015	Draft B	NU	SP	SP
Draft C	9/05/2016	Draft C	LL	SP	GH
Final	5/08/2016	FINAL	LL	GH	GH

Contents

Execu	itive Summary	4
1.	Introduction	5
1.1	Barwon Downs region	5
1.2	History of the Barwon Downs borefield	6
1.2.1	Borefield history	6
1.2.2	Groundwater extraction	7
1.2.3	Licence history	7
1.3	Current groundwater licence	9
1.4	Strategic drivers for the Barwon Downs technical works monitoring program	9
1.4.1	Water security	9
1.4.2	Community issues	9
1.4.3	Informing the licence renewal	10
1.5	Overview of the technical works monitoring program	10
1.5.1	Monitoring program development	10
1.5.2	The inter-relationships of the technical works monitoring program	12
1.6	This project	13
2.	Hydrogeological Conceptual Model	15
2.1	Current understanding of the hydrostratigraphy	15
2.2	Knowledge gaps in the conceptual model	18
3.	Bore Construction and Reinstatement	21
3.1	Permit approvals	21
3.2	Drilling and construction of new bores	21
3.2.1	Drilling program	24
3.2.2	Soil sampling	25
3.2.3	Bore construction and survey details	25
3.2.4	Bore Development	28
3.3	Reinstatement of existing bores	30
3.4	Installation of data loggers	31
3.5	Gamma logging	33
4.	Hydraulic Testing	35
4.1	Method	35
4.2	Results and discussion	35
5.	Groundwater Quality	39
5.1	Method	39
5.2	Results and discussion	39
5.2.1	Groundwater Salinity	39
5.2.2	рН	43
5.2.3	Major lons	43
6.	Conclusions and Recommendations	45
6.1	Conclusions	45

6.2	Recommendations	.46
7.	References	.47

- Appendix A. Bore logs for new monitoring bores
- Appendix B. Photographs
- Appendix C. Additional Survey Results
- Appendix D. Specification provided to drilling contractor to reinstate existing bores
- Appendix E. Gamma logs of existing bores
- Appendix F. Slug Test Results

Executive Summary

Barwon Water Authority operates the Barwon Downs borefield, which provides an important supply of potable water for the community in and surrounding Geelong. This report is one of a series of reports that records the results of the technical investigation program into the operation of the borefield. In 2013, Jacobs (as SKM) recommended the installation of additional monitoring bores to address gaps identified in the monitoring network. Additional groundwater monitoring bores were recommended at priority sites for potential acid sulphate soils, vegetation monitoring sites and other areas where information gaps had been identified. The monitoring bores were installed in 2014/15 and this report documents the capital works program to install new bores and reinstate existing bores.

The field program included the installation or reinstatement of 40 bores in total which included:

- 35 new bores were drilled and constructed
- 2 existing bores were replaced (64239 was replaced by RB1 and 109136 was replaced and has the same name)
- Three bores were reinstated by airlifting and fixing bore head works (109130, 109139 and 109143).
- Dataloggers were installed to monitor groundwater levels in all bores with the exception of bores that were dry or not considered to add significant value (e.g. TB2a, TB2b, TB4a and TB4c)
- Gamma logging was undertaken on bores where practical, as well as an additional 12 existing bores to collect information on the presence of confining clay layers in the hydrogeological profile.
- Hydraulic testing, in the form of slug tests, was undertaken on 30 bores to understand the range of aquifer parameters in each formation.
- Groundwater samples were analysed for salinity and pH and some aquitard bores were analysed for major ions.

The results of the hydraulic testing provide the first estimate of hydraulic conductivity in the basement and Mid Tertiary Aquitard (MTD). Three new bores were installed in the basement aquifer and the horizontal hydraulic conductivity was found to range between 3 and 7.2 x 10^{-3} m/d. This is higher than conductivity that was used in the previous groundwater model.

The hydraulic testing for the Lower Tertiary Aquifer (LTA) showed considerable variability with horizontal hydraulic conductivity ranging between 0.2 and 9.2×10^5 m/d. There were more bores with lower conductivities than expected for an aquifer. It likely that the monitoring bores are intersecting lower permeability layers within the LTA that are not regionally extensive. Based on previous studies, the hydraulic conductivity of the LTA was expected to be in the range of 1 to 5 m/d.

The hydraulic testing of one bore confirmed the Lower Mid Tertiary Aquifer (LMTD), also known as the Clifton Formation, is a minor aquifer with a horizontal conductivity of 0.54 m/d.

The hydraulic conductivity of the shallow alluvial materials or Quaternary Alluium (QA) was reasonably high (0.005 to 4.7 m/d) with an average value of 0.63 m/d. This is consistent with the QA being a minor aquifer.

Groundwater stored in the shallow alluvial materials (QA) with higher hydraulic conductivity was found to contain relatively fresh (<500 μ S/cm EC) groundwater compared to other hydrogeological units. Groundwater collected from basement rocks was generally higher in salinity (average EC around 3,500 μ S/cm).

1. Introduction

1.1 Barwon Downs region

The Barwon Downs bore field is located approximately 70 km south west of Geelong and 30 km south east of Colac (refer to Figure 1-1). The surrounding land is a mixture of agriculture and state forest. A substantial proportion of the study area has been farmed for over a century which has resulted in some parts of the landscape being highly modified compared to the surrounding natural environment.

Figure 1-1 Map of the Barwon Downs region including the aquifer extent and the primary groundwater recharge area

The regional groundwater system extends beneath two surface water catchments, the Barwon River catchment and the Otways Coast catchment.

The Barwon River and its tributaries rise in the Otway Ranges and flow north through Forrest and Birregurra. The Barwon River West Branch and East Branch drain the southern half of the catchment and come together just upstream of the confluence with Boundary Creek. Boundary Creek flows east across the Barongarook High and joins the Barwon River around Yeodene.

The Otways Coast catchment is a large catchment with many rivers that flow towards the coast. The Gellibrand River is in the Otways Coast catchment and rises near Upper Gellibrand and flows in a westerly direction towards Gellibrand. The Gellibrand River discharges to the ocean at Princetown.

The borefield taps into an underground source of water, known as the Lower Tertiary Aquifer, with depths of up to 600 metres at the borefield. The aquifer covers an area of approximately 500 km² below the surface and is

connected to the surface in both the Barwon River catchment (Barongarook High) and the Otways Coast catchment near Gellibrand. Barongarook High is the main recharge area of the aquifer because of its unconfined nature.

1.2 History of the Barwon Downs borefield

1.2.1 Borefield history

In response to the 1967-68 drought, when water supplies reached critical levels, the Geelong Waterworks and Sewerage Trust (now Barwon Water) began investigating groundwater resources as a means of supplementing surface water supplies used for the Geelong region. Investigations conducted in the Barwon Downs region revealed a significant groundwater resource with potential to meet this need.

In 1969 a trial production bore was built and tested close to the Wurdee Boluc inlet channel at Barwon Downs. With knowledge gained from these results another bore was built at nearby Gerangamete in 1977. A long term pump testing programme from 1987-1990 confirmed that the borefield should be centred on Gerangamete.

There are now six production bores in the borefield each between 500 and 600 metres deep. Pumps in each bore are capable of providing daily flows of up to 12 megalitres (ML) per day per bore. The pumped water is treated by an iron removal plant prior to transfer to Wurdee Buloc Reservoir. Total borefield production capacity is 55 ML per day.

1.2.2 Groundwater extraction

Barwon Water operates the borefield in times of extended dry periods. This has occurred only five times in the last 30 years. The borefield is a critical back up source for Barwon Water because it is buffered from climate variability due to the depth and large storage capacity of the aquifer, whereas surface water catchments are susceptible to seasonal fill patterns mostly driven by rainfall.

Although extraction occurs infrequently, large amounts of groundwater are drawn when needed to supplement surface water storages during drought. This is completed in compliance with the groundwater licence (refer to Section 1.3). This operational philosophy of intermittent pumping has been an effective way to provide customers with security of supply, especially in times of prolonged dry conditions.

To date, Barwon Water has extracted the following volumes from the aquifer:

- 3,652 ML from February to April in 1983 due to drought,
- 19,074 ML during a long term pump test in the late 1980s,
- 36,817 ML during the 1997 2001 drought,
- 52,684 ML during the 2006 2010 millennium drought, and
- 2,383 ML in 2016 to boost storages after a very dry summer.

Groundwater extraction has supplemented surface water supply by a total of 114,610 ML, equating to approximately 10 per cent of total water consumed over a 30 year period.

1.2.3 Licence history

The first licence was issued in 1975 but did not come into effect until 1982, as the bores were not brought into operation until the 1982-83 drought. This was the first time the borefield was used to supply water to Geelong. The licence issued by the State Rivers and Water Supply Commission (now Southern Rural Water) was to allow Barwon Water to operate four production bores based on the following conditions:

- Extraction for the purpose of urban water supply;
- Maximum daily extraction rate of 42.5 ML;
- Maximum annual extraction rate of 12,600 ML;
- Maximum ten-year extraction rate of 80,000 ML; and
- Periods of licence renewal of 15 years (1975 1990).

The licence was subsequently renewed for two periods of five years up to 2000. From 2000, the licence was temporarily extended three times for a total of four years to allow the licence renewal to take place through to 31 August 2004.

In 2002¹, Barwon Region Water Authority (now Barwon Water) applied to renew the Barwon Downs borefield licence for extraction of groundwater to meet urban water supply needs. The application proposed the following:

- Maximum daily extraction rate of 55 ML;
- Maximum annual extraction rate of 20,000 ML;
- Maximum ten-year extraction rate of 80,000 ML;
- Long term (100 year period) average extraction rate of 4,000 ML/year; and
- Licence renewal period of 15 years.

From 2004 to 2006, the licence was temporarily extended to allow for the licence renewal to take place. Licence conditions were drafted by the panel taking into consideration the findings of the technical groups and the submissions received. This licence is valid to 30 June 2019.

Figure 1-3 Timeline of events that surround the development and use of the Borefield

¹ Note: Bulk Entitlement was considered in 2002 so that the Upper Barwon System could be managed conjunctively. This was put aside as the view at the time was that the rights to groundwater should continue to be contained in a licence and subject to regular review.

1.3 Current groundwater licence

The Barwon Downs borefield is operated under licence from Southern Rural Water. This licence was granted in 2004 and is due for renewal by June, 2019.

This licence makes provision for extraction limits on a volumetric basis over a range of time scales. As part of the licence conditions, Barwon Water monitor groundwater levels and quality, subsidence, flow in Boundary Creek and Barwon River, as well as the protection of riparian vegetation, protection of stock and domestic use and the protection of flows in the Barwon River tributaries.

Reporting against these licence conditions is provided in an annual report to Southern Rural Water who administers and regulates groundwater licences on behalf of the Water Minister..

1.4 Strategic drivers for the Barwon Downs technical works monitoring program

Ahead of the upcoming 2019 licence renewal process, Barwon Water instigated a technical works monitoring program to improve the comprehensiveness of the current monitoring program to ensure the submission of a technically sound licence application.

Driving the need for this monitoring program is the reliance on the borefield to provide water security for Barwon Water customers, to address outstanding community issues particularly where the relationship between cause and effect is not yet fully understood, and to close out any known technical knowledge gaps.

1.4.1 Water security

The Barwon Downs borefield provides water for the regional communities of Geelong, the Surf Coast, the Bellarine Peninsula and part of the Golden Plains Shire.

A prolonged period of unprecedented drought (known as the Millennium drought) saw a sustained dry climate average from 1997 to 2011. In 1997, many of the region's water storages were close to capacity, however by January 1998, after high consumption and low catchment inflows, water restrictions were necessary to balance supply and demand in the Geelong area. This clearly highlighted that even by having large storages the region was susceptible to rapid changes.

In 2001, strong catchment inflows from healthy rainfall refilled storages, ending water restrictions in Geelong. Five years later, after a very dry year, strict water restrictions were again required with climate extremes exceeding the historical record. At the height of the Millennium drought, Geelong's water storages dropped to 14 per cent when catchment inflows were severely reduced. To meet demand during this time 52,684 ML was extracted from the borefield providing up to 70 per cent of Geelong's drinking water.

In 2010, improved rainfall restored storages and restrictions were again slowly lifted in the Geelong area. This allowed the Barwon Downs borefield to be switched off and to begin recharging. Without the use of the borefield during this time, residents and industry in Geelong, Bellarine Peninsula, Surf Coast and southern parts of the Golden Plains Shire would have run out of water.

The township of Colac will soon be connected to the Geelong system through construction of a pipeline between Colac and Geelong. This interconnection will also allow the borefield to supply Colac residents and will provide additional water security for the water supply system which is currently susceptible to seasonal fill patterns.

1.4.2 Community issues

Although Barwon Water is compliant with the monitoring program associated with the 2004 licence, it is accepted that this program is not comprehensive enough to address community interest about specific issues centered on potential environmental impacts in the local catchment.

Areas of community interest recently have included the:

- extent of stream flow reduction and any ecological impacts at various points along Boundary Creek,
- potential to increase existing acid sulphate soil risks in the Yeodene peat swamp,
- potential to increase the existing fire risk at the Yeodene peat swamp, and
- extraction limits and the current operational regime of the borefield, and whether they are sustainable under climate change projections.

A Community Reference Group was established in 2013 to provide community feedback and input into the technical works monitoring program.

1.4.3 Informing the licence renewal

To address community interest adequately and inform the licence renewal in 2019, Barwon Water commissioned a review of the existing monitoring program associated with the 2004 licence. This technical review recommended that a revised technical works monitoring program be developed with the following objectives:

- Better understand the environmental impacts of groundwater extraction;
- Estimate, and quantify where possible, the causes and relative contributions of groundwater variability (for example, groundwater extraction and drought) in contributing to environmental impacts; and
- Provide additional monitoring data and subsequent analysis required to support the licence renewal process.

1.5 Overview of the technical works monitoring program

1.5.1 Monitoring program development

The development of the technical works monitoring program is shown in Figure 1-4 and can be broken down into the following stages.

Stage 1: Review of the existing monitoring program

In 2012, Barwon Water initiated a review of the Barwon Downs monitoring program. The technical works monitoring program was developed in response to the:

- desire to address key community issues (see section 1.4.2), and
- 2008-09 flora study which recommended a long term vegetation and hydrogeological monitoring program be designed and implemented to better understand a range of factors such as groundwater extraction, drought and land use changes that were contributing to the drying of the catchment.

This review took into account both the social and technical issues that needed to be addressed to inform the licence renewal process in 2019 and was initiated early to allow sufficient time to establish a comprehensive monitoring program. A risk based approach was used to rank these issues, and control measures were developed to downgrade the residual risk ranking, which included activities such as additional monitoring and technical studies.

Stage 2: Technical works monitoring program scope refinement

In 2013, the scope of the technical works monitoring program was developed based on the recommendations of Stage 1. The Technical Works Monitoring Program was designed to improve the capacity to differentiate between groundwater extraction and climate effects on the groundwater system, predict water table and stream flow changes, and increase understanding of potential ecological impacts. Key improvement areas include:

- differentiating between groundwater extraction and climate effects on the regional groundwater system,
- understanding the potential risks of acid sulphate soils and whether that could change future extraction practices,
- assessing whether vegetation in areas dependent on groundwater will be at risk from water table decline, which could change future extraction practices,
- assessing flow requirements in Boundary Creek to determine if the current compensatory flow is effective,
- characterising groundwater dynamics in the aquitard to improve hydrogeological understanding of groundwater flow and quantity, and
- better understanding of groundwater and surface water interaction, particularly along Boundary Creek where groundwater contributes to base flow.

In the same year, the Barwon Downs Groundwater Community Reference Group was also formed by Barwon Water to ensure where possible, the monitoring program was adjusted and the scope refined, to take into consideration community issues and views. This was a critical contribution towards the broader licence renewal strategy as it raised confidence that the right monitoring data would be captured to specifically target key areas of community concern.

Stage 3: Construction of additional monitoring assets

During 2014-15, the following construction works were completed:

- 33 new groundwater monitoring bores drilled, including the replacement of one existing bore,
- 3 existing bores refurbished,
- 4 new potential acid sulphate soils monitoring bores were installed,
- 32 data loggers and two barometric loggers installed in new and existing bores,
- 1 new stream flow gauges installed, and
- 2 existing stream flow gauges replaced refurbished and reinstated.

Stage 4: Ongoing monitoring

The technical works monitoring program is now in a phase of data collection and preliminary analysis. The intention of this stage is to update the conceptual understanding of the hydrogeology in the Barwon Downs region. This will be based on data collected from additional and existing monitoring assets and the outcomes of a range of investigative technical studies, all of which will be used to update and calibrate the groundwater model.

Preparation will also begin at this stage to form a comprehensive licence application.

Stage 5: Preparation for licence renewal submission

Prior to 2019, Barwon Water will need to formally submit a licence renewal application to Southern Rural Water. This will initiate a groundwater resource assessment process as set out under the Water Act.

1.5.2 The inter-relationships of the technical works monitoring program

The technical works monitoring program is a complex, multi-disciplinary project due to the overlapping nature of the various components of the program as shown in Figure 1-5.

Changes in climate, land use practices and groundwater pumping will alter water availability throughout the catchment, including stream flow and groundwater levels. Many receptors are sensitive to changes in groundwater levels and stream flows, particularly those that are dependent on groundwater. Ultimately this can lead to the loss of ecological values (refer to Figure 1-5).

For example, a decline in groundwater level beneath a stream can cause a reduction in stream flow, which in turn can impact the habitat of aquatic ecology in the stream. Declining groundwater levels or reduced stream flow also has the potential to impact riparian vegetation and potential groundwater dependent activities.

The technical works monitoring program is designed to address knowledge gaps to better understand potential impacts from the borefield. The program is underpinned by scientific rigor using multiple lines of evidence-based techniques to establish the relationship between cause and effect for potential impacts caused by groundwater extraction.

Figure 1-5 Potential impacts in the catchment from changes in the catchment

1.6 This project

In 2013, Jacobs (as SKM) recommended the installation of additional monitoring bores to address gaps identified in the monitoring network. Additional groundwater monitoring bores were recommended at priority sites for potential acid sulphate soils, vegetation monitoring sites and other areas where information gaps had been identified.

In 2014/15, Jacobs completed a field program that involved the installation of 37 bores (including two replacement bores) and reinstating another 3 bores. The total number of bores drilled or reinstated was 40. The purpose of this report is to document the details of the capital works program to install new bores and reinstate existing bores. This report presents factual details of bore construction, aquifer testing and groundwater quality sampling results, with minimal interpretation. A more detailed interpretation of all the monitoring data collected from the whole monitoring network will be provided in the Integration Report.

This report describes the following:

- The construction of groundwater monitoring bores including drilling methods, lithological logs, gamma logs, bore construction details, materials used and the development method used in each bore.
- Installation of groundwater level data loggers.
- Results of the aquifer testing.
- Description of groundwater quality monitoring program and results.

2. Hydrogeological Conceptual Model

2.1 Current understanding of the hydrostratigraphy

The stratigraphy of the study area is dominated by two major systems within the Barwon Downs Graben - the Mid Tertiary Aquitard (MTD) and the Lower Tertiary Aquifer (LTA). Surficial sediments overlie the MTD along rivers and creek channels and bedrock underlies the LTA throughout the area. Individual formations within the MTD and LTA are described in Table 1.

The Barwon Downs Graben is bounded to the south-east and north by three fault systems. The Bambra fault is orientated NE-SW and acts as a partial groundwater barrier across most of its length, forming the south-eastern boundary of the Barwon Downs Graben (Witebski et al. 1991). The east-west orientated Birregurra Fault is located to the north of Yeodene and is characterised by over 300 m of vertical displacement, forming the northern boundary of the Barwon Downs Graben. The location of the faults is shown in Figure 7.

System	Geological Unit	Description	Туре
Minor surficial sediments	Quaternary Alluvium	Sands, silts and gravels.	Aquifer (minor)
	Gellibrand Marl	Calcareous silty clay and clayey silt. Fossiliferous.	Aquitard
Mid Tertiary Aquitard (MTD)	Clifton Formation	Calcarenite with marine fossils and minor quartz and limonite sands	Aquifer (minor)
	Narrawaturk Marl	Calcareous mudstone with thin carbonaceous beds, sand beds and fossiliferous beds	Aquitard
	Mepunga Formation	Medium to coarse grained quartz sand with some carbonaceous clays and silt layers	Aquifer
Lower Tertiary	Dilwyn Formation	Carbonaceous, sandy clays and silts, with some quartz sand and silty sand beds, and minor gravel. Coal and carbonaceous clays also occur in this unit.	Aquifer
Aquifer (LTA)	Pember Mudstone	Clays, silts and fine grained sand with carbonaceous, micaceous and pyritic horizons.	Aquitard (minor)
	Pebble Point Formation	Fine-grained sand with carbonaceous silt and quartz pebble beds. This unit is an equivalent to the Moomowroong Sand Member, Wiridjil Gravels that occur in the Gellibrand sub-basin to the south west of the study area.	Aquifer (minor)
Bedrock		Sandstone, siltstone and mudstone with feldspar and quartz grains, well- bedded and consolidated.	Aquitard

Table 1 Aquifers and aquitard units in the study area¹

1. Table after SKM and EA (2008). Grey shading indicates low permeability aquitard units.

The MTA is the main aquitard system and is comprised of the Gellibrand Marl, Clifton Formation and Narrawaturk Marl. The Gellibrand Marl and Narrawaturk Marl are low permeability units while the Clifton Formation is a minor aquifer in the layered sequence.

The LTA is the major aquifer system in the area and provides high quality groundwater to the Barwon Downs bore field. The LTA is comprised of the Mepunga Formation, Dilwyn Formation, Pember Mudstone and Pebble Point Formation. Of these, the low permeability Pember Mudstone acts locally as an aquitard within the aquifer system.

Figure 6 shows a cross section through the Barwon Downs Graben. This shows that the LTA has a synclinal (u shaped) structure that overlies bedrock. Folding and erosion have exposed the LTA at the elevated Barongarook High. Throughout the majority of the remaining study area the aquifer is overlain by the main aquitard system or MTD which is up to 500m in thickness in the centre of the borefield.

Figure 6 Cross section (NW-SE orientation) of the Barwon Downs area after Witebski et al. 1991.

Groundwater recharge to the borefield occurs where the LTA outcrops at the Barongarook High to the west of the borefield. The aquifer is unconfined in this area. Figure 7 shows the groundwater levels and flow direction in the LTA. The LTA is also unconfined east of the borefield, however this area lies to the east of the Bambra Fault (refer Figure 1). The current conceptual understanding is that groundwater flow within the LTA across the fault is minor and as such, recharge to this section of the LTA is thought to provide minimal recharge to the borefield.

Groundwater flow direction in the LTA changes when the Barwon Downs borefield is pumped. In 2014, four years after groundwater extraction from the borefield had ceased, groundwater levels are recovering in the aquifer, as shown in Figure 7. Groundwater flow directions in the LTA orient radially from Barongarook High, including to the south to the Gellibrand area and east towards the bore field. A the borefield levels have been reduced to below 140 m AHD. A groundwater ridge extending roughly from Coram to Birregurra, and then to Pennyroyal is currently understood to form a temporary boundary at which groundwater flows to the north and away from the bore field, as indicated by the groundwater divide in Figure 7.

Figure 7 Groundwater levels and flow direction in the Lower Tertiary Aquifer (2014)

 $Refer \ to \ Jacobs \ document; \ l: VWES \ Projects \ VW07575 \ Technical \ Spatial \ Working \ ArcGIS \ Boundary_creek_2014_A3.mxd$

2.2 Knowledge gaps in the conceptual model

Several knowledge gaps were identified in SKM (2013) and additional monitoring bores were recommended to help refine the understanding of the hydrogeological setting of the Barwon Downs area. An improved understanding of the conceptual model will allow for more rigorous assessment and management of the groundwater response resulting from borefield pumping.

Five key knowledge gaps were identified:

- 1. Groundwater levels at terrestrial vegetation monitoring sites:
 - Additional bores were recommended to understand the relationship between vegetation and groundwater at vegetation monitoring sites and evaluate potential drawdown impacts on vegetation where the LTA is confined and unconfined.
- 2. Groundwater levels and aquifer parameters, particularly in the MTA:
 - Additional bores were recommended to understand levels, vertical gradients, hydraulic properties, flow directions and fluctuations in groundwater levels to help understand impacts of pumping on the aquitard and overlying ecological values.
- 3. Groundwater surface water interactions along drainage lines (e.g. Boundary Creek, Dividing Creek, Ten Mile Creek and minor tributaries) and surface water levels in Boundary Creek:
 - Additional bores were recommended to improve the understanding of groundwater surface water interactions.
- 4. Groundwater levels in the water table aquifer at Barongarook High (including bedrock and LTA)
- 5. Groundwater levels at sites with potential acid sulphate soils (PASS)

To address these data gaps, 37 new bores were installed which included replacement of three existing bores (which had become dry or failed). A summary of the bores that were installed to address each knowledge gap is outlined in Table 2.

Bores prefaced with the letter "A" in Table 5 were constructed where the Middle Tertiary Aquitard (MTD) was outcropping. These bores were constructed to provide information regarding the depth to the watertable, vertical gradients at nested sites and responses to pumping in the aquitard. Additionally, some bores were constructed to allow interactions between groundwater in the aquitard and nearby water courses to be assessed., Nested sites (A5 and A6) were designed to provide vertical hydraulic gradient information in the aquitard.

Bores prefaced with "TB" were constructed in order to determine the depth to the watertable at vegetation impact and reference monitoring sites. Additionally, "TB" bores located close to Boundary Creek have the dual purpose of evaluating groundwater flow directions around the creek. Bores prefaced with "UBCk" and "UDvCk" have the primary purpose of determining groundwater flow directions to and around Boundary Creek and Dividing Creek, respectively.

Table 2 Summary of bores installed to address knowledge gaps

Bore	Veg sites	Aquitard	GW-SW interactions	Watertable	PASS sites	Comments
A1		✓	✓	✓		
A2		✓	✓	✓		
A3		✓	✓	✓		
A4		✓		✓		
A5a		✓	✓			Provides vertical gradient in aquitard,
A5b		~	~	~		and with nearby bores, vertical gradient information through multiple units
A6a		✓				Provides vertical gradient in aquitard
A6b		✓		✓		
RB1				✓		Replacement bore at 64239
109136			✓	✓		Replaced existing bore
TB1a	✓		✓	✓	✓	Triple nested site to understand
TB1b	✓	✓	✓			relationship between pressure change
TB1C	✓		~			(Yeodene) swamp.
TB2a	~		√	~		Watertable not intersected at this location.
TB2b	✓		~	 ✓ 		Additional bores drilled to intersect
TB2c	√		~	✓		watertable. TB2c also provides information on water levels at the Site 3 (FLOWS assessment)
TB3	✓		✓	✓		
TB4a	✓		~	✓		Perched aquifer identified during
TB4b	✓		~	✓		drilling, so two additional nested bores
TB4c	✓		✓	~		monitor regional watertable.
TB5	✓		✓	✓		GW flow to Boundary Creek
TB6	✓		✓	✓		
TB7	✓		✓	✓		
TB8	✓	✓		✓		
TB9	✓		✓	✓		
TB10	✓	✓	✓	✓		
TB11	✓		✓	✓		
TB12	✓		✓	✓		
TB13	✓		✓	✓		
TB14	~	✓	√	✓		Additional bore to monitor additional veg monitoring site.
UBCk1			✓	✓		GW flow in upper Boundary Creek
UBCk2			✓	✓		GW flow in upper Boundary Creek
UDvCk			✓	✓		Extent of unsaturated LTA
PASS1			✓	✓	~	
PASS2			✓	✓	~	
PASS3			✓	✓	✓	
PASS4			✓	✓	~	

Installation of new monitoring assets

Some of these bores were not included in the original recommended works program in 2013 and were added to the monitoring network as a result of the conditions identified on site being different to predicted. For example, several sites had nested bores installed at three different depths to monitor water levels in perched/shallow and deeper aquifers. The rationale for each additional bore is provided below.

- **TB1b** and **TB1c** These two new bores are located adjacent to TB1, at the lower end of Big Swamp. After drilling TB1a, a very shallow watertable at Big Swamp was identified. To understand the relationship between the shallow watertable and underlying LTA, two additional bores were installed at the same location. There is now one bore in the shallow alluvial swamp deposits (TB1a), one in the aquitard (TB1b) and one in the LTA (TB1c). This provides the opportunity to understand the relationship between these three units, including assisting in understanding how the swamp responded to borefield pumping in the past, and how it will respond to pumping in the future.
- **TB2b** and **TB2c** During the initial drilling program, TB2a failed to intersect the watertable (at the depth capacity of the drilling rig in the given soil conditions). Subsequently, additional bores TB2b and TB2c were constructed in a further attempt to intersect the watertable. These bores were drilled lower in the landscape (i.e. vertically closer to the swamp) to ensure the watertable was intersected. TB2c was drilled at the same location as the T2 vegetation monitoring site and is located at the southern end of the T2 transect. This site is also coincident with Site 3 in the FLOWS assessment conducted for Boundary Creek in 2016 (Jacobs, 2016).
- **TB4b** and **TB4c** During the initial drilling program TB4a failed to intersect the watertable. This was considered anomalous, as the bore was well below the depth where groundwater was expected. Subsequently, TB4c was constructed deeper to intersect the watertable. Additionally, a bore shallower than TB4a was constructed (TB4b) and found to contain groundwater. Hence this nested site consists of a shallow watertable bore, an intermediate depth bore (which is dry) and a deeper bore.
- **TB14** At the request of the Barwon Downs Community Reference Group (BDCRG), an additional reference vegetation monitoring site (T14) was added to the vegetation monitoring sites. This bore was drilled to provide a monitoring bore at that site. TB14 was required in order to monitor the depth to watertable and associated trends at this site. While there are two existing State Observation Bore Network (SOBN) bores nearby, the bores are screened deep, and are not considered to be monitoring the watertable.
- 109136 (replacement) The original intention was to rehabilitate bore 109136, but field investigations
 identified that it was too clogged with sediment to be redeveloped. Hence a replacement bore was
 drilled in close proximity to this bore.

3. Bore Construction and Reinstatement

The field investigation program involved installation of 37 new bores and replacement of three existing bores. The bores were installed across four construction periods between May 2014 and May 2015. The details of work carried out during each mobilisation are outlined below:

- The majority of work was undertaken during May to July 2014. Drilling was undertaken using a combination of solid stem auguring, hollow stem auguring and mud rotary drilling methods, depending on the geology and depth of each hole.
- Additional bores TB2b, TB4b, TB4c and TB14 were installed in a second mobilisation in August 2014.
- Four PASS bores, along with 109136 (replacement) was drilled in a third mobilisation in February 2015. The three SOBN bores earmarked for renewed monitoring were also redeveloped and reinstated.
- TB2c, TB1b and TB1c were installed in the final mobilisation in May 2015.

This section describes the drilling and construction of the new bores and reinstatement of existing bores.

3.1 Permit approvals

Two permits were required to undertaken the field work – a bore construction licence and a licence to undertaken works in a national park.

Bore construction licences were required for all bores and were obtained from Southern Rural Water. Bores located in national parks also required additional licences to undertake works in a national park and these permits were organised by the Barwon Water Alliance.

3.2 Drilling and construction of new bores

A key purpose of any monitoring bore is to measure the groundwater level or pressure in a target aquifer. A diagram of a typical observation bore is shown in Figure 8. The depth, diameter and position of the screen and seal will vary between each individual bore.

The location of all the new and reinstated monitoring bores is shown in Figure 9.

Figure 8 Typical monitoring bore

Figure 9 Location map of new monitoring bores

3.2.1 Drilling program

The bores were drilled and constructed by GoDrill Pty Ltd. The drill diameter varied in size from 114 mm for solid stem auguring, up to 200 mm for mud rotary drilling and 230 mm for hollow stem auguring.

Representative lithological samples were collected during the drilling process. These were combined with interpretive notes from the driller and drilling supervisor (from Jacobs/SKM) to create lithological logs for each borehole, which are presented in Appendix A. Any collapse in the hole or backfill to obtain the target screen depth was also recorded on site. The summarised details of each drilled hole are presented in Table 3.

Site	Drilling commence (date)	Drill method	Drilled Diameter (mm)	Total drilled depth (m)	Depth to backfill (m)	Backfill type
A1	12/6/14	Mud rotary	200	41.5	41.5	N/A
A2	3/77/14	Mud rotary	114	40.0	39.8	Fall in
A3	30/5/14	Solid auger	114	13.0	13.0	N/A
A4	14/6/14	Mud rotary	200	40.0	39.3	Fall in
A5a	26/6/14	Mud rotary	191	100.0	99.1	Fall in
A5b	28/5/14	Hollow Auger	230	20.5	18.0	Fall in
A6a	8/7/14	Mud rotary	191	100.0	95.5	Fall in
A6b	27/5/14	Solid auger	114	17.7	17.7	N/A
RB1	17/6/14	Mud rotary	200	92.1	91.5	Fall in
TB1a	12/5/14	Hollow auger	230	12.5	12.2	Fall in
TB1b	26/5/15	Mud rotary	143	19.0	19.0	N/A
TB1C	26/5/15	Mud rotary	143	36.5	36.5	N/A
TB2a	16/5/14	Solid auger	114	18.6	17.2	Fall in
TB2b	19/8/14	Solid auger	114	7.2	7.0	Fall in
TB2c	29/5/14	Hollow auger	230	3.0	2.8	Fall in
TB3	28/5/14	Mud rotary	191	40.0	30.0	Fall in
TB4a	22/5/14	Hollow auger	230	14.5	14.5	N/A
TB4b	20/8/14	Solid auger	114	30.0	7.67	Fall in
TB4c	20/8/14	Solid auger	114	31.0	31.0	N/A
TB5	20/5/14	Solid auger	114	32.5	32.5	N/A
TB6	19/5/14	Solid auger	114	25.0	21.4	Fall in
TB7	28/5/14	Hollow Auger	230	13.5	6.7	Fall in
TB8	28/5/14	Solid auger	114	27.5	26.5	Fall in
TB9	26/5/14	Hollow Auger	229	11.5	11.2	Fall in
TB10	21/5/14	Solid auger	114	12.5	10.5	Bentonite/Gravel
TB11	22/5/14	Hollow auger	230	11.5	10.5	Fall in
TB12	27/5/14	Solid auger	114	11.6	11.6	N/A
TB13	22/5/14	Solid auger	114	13.0	12.5	Gravel
TB14	21/8/14	Solid auger	114	12.0	12.0	N/A
UBCk1	21/5/14	Solid auger	114	20.8	19.0	Fall in
UBCk2	22/5/14	Solid auger	114	18.0	17.9	Fall in
UDvCk	2/6/14	Mud rotary	200	68.5	59.8	Fall in
109136	10/2/15	Mud rotary	141	40.0	40.0	N/A
PASS1	14/2/15	Hollow auger	230	10.0	10.0	N/A
PASS2	16/2/15	Hollow auger	230	10.2	9.8	N/A
PASS3	13/2/15	Hollow auger	230	10.0	10.0	N/A
PASS4	17/2/15	Hollow auger	230	10.0	8.0	Fall in

Table 3 Summary borehole drill notes

1. Backfill refers to any material that replaced a portion of material between the base of the drilled hole and the base of casing. In most cases small amounts of the natural material fell into the hole which has been referred to as "fall in". However various combinations of gravel, bentonite and excavated material were also used to elevate the bottom of the drilled hole to help optimise the depth of the screen.

3.2.2 Soil sampling

At the four PASS sites, soil pH was recorded during the drilling of groundwater monitoring bores. Soil samples were mixed in a 1:1 ratio with distilled water and the resulting solution measured with a pH probe in the field. In addition the pH and salinity in the closest waterway was measured. The pH probe broke in the field and results were not collected at PASS4. This will not impact the overall results as an intensive soil sampling program was undertaken at the site prior to the bores being installed. Soil samples were analysed at the laboratory and the results are documented in a separate report titled *Potential acid sulphate soils field investigations report* (Jacobs, 2014).

The results of soil pH testing during the installation of the monitoring bores are presented in Table 4.

	Sample Site								
Sample Depth (m)	PASS1	PASS2	PASS3	PASS4 ¹					
1	4.65	4.99	4.65	2.3					
2	4.33	5.06	4.07	-					
3	5.27	4.88	4.18	-					
4	-	5.03	3.78	-					
5	5.25	4.62	3.47	-					
6	5.45	4.66	3.55	-					
7	5.44	-	3.44	-					
8	5.83	4.64	3.36	-					
9	6.03	-	3.29	-					
10	5.73	4.72	3.28	-					
Nearby Creek	pH: 3.57 1360 μS	pH: 5.67 270 μS	pH: 4.87 3460 μS)	-					

Table 4 Soil pH recorded during drilling of the PASS monitoring bores

1. The pH/EC meter was broken for most of the sampling at this site

3.2.3 Bore construction and survey details

A summary of the bore construction details for each bore are provided Table 5 and full construction details for each site are contained in borehole logs in Appendix A. Photographs of the newly constructed bores are presented in Appendix B.

Monitoring bores were constructed by joining the required casing, screen and sump lengths and lowering them down the drilled hole. When the screened section of the casing was likely to be situated in very fine, unconsolidated material, filter socks (polyester fabric socks) were used over the screen to prevent migration of sediment into the bore.

Gravel pack (5/2 Sibelco gravel) was free poured into the annulus to provide a filter pack around the screened section. Bentonite (Pel plug pellets or bentonite chips) was free poured on top of the gravel pack. In shallow bores (total depth less than approximately 35 m depth below ground level), a grout mixture consisting of an approximately 25:1 cement to bentonite powder was hydrated and free poured down the annulus. In deeper bores (greater than 35 m depth), the grout mixture was pumped down the annulus using a slotted polyethylene pipe that was fed down the annulus with the casing.

Constructed bores were finished approximately 0.60 m above ground level and encased in steel standpipes that were finished approximately 0.70 m above ground level. During construction of the bore headworks, material surrounding the base of the bore was removed to allow the base of the standpipe to be concreted at a depth of approximately 0.30 m below ground surface. Steel standpipes were locked with a uniform set of locks and a key

provided to Barwon Water. Additional steel standpipes with reflective tape were placed next to constructed bores to provide protection from nearby traffic and vehicles associated with road verge maintenance.

Figure **10** shows the final construction of bore A3 and is typical of the surface headworks of bores constructed during the field investigations.

Figure 10 Bore A3 as an example of headworks of newly constructed monitoring bores

The location and elevation of each monitoring bore was surveyed using a digital global positioning system (DGPS) with an accuracy of ± 0.05 cm or better. The location and elevation of six bores (as indicated in the table) were not collected using the DGPS and estimates are provided in Table 5.

In the first round of surveying, some locations along the bank and base of Boundary Creek were also recorded. These results, along with remaining survey data of the bores, are presented in Appendix C.

Table 5 Summary bore construction and survey details

Site	Date	Easting	Northing	MZ	Base elevation¹ (m - AHD)	Stickup (m)	Depth (m)	Screen from (m)	Screen to (m)	Screen aperture (mm)	Diamet er (mm)	Filter sock
A1	13/6/14	216799	5740303	55	164.19	0.48	41.68	37.5	40.5	0.8	100	No
A2	3/7/14	212783	5741862	55	155.55	0.52	40.72	35.8	38.8	0.8	50	No
A3	30/5/14	212792	5742428	55	140.74	0.53	13.57	9.5	12.5	0.4	50	No
A4	14/6/14	213949	5744373	55	208.92	0.54	40.53	35.3	38.3	0.8	100	No
A5a	27/6/14	215315	5740043	55	141.18	0.65	98.45	95.1	98.1	0.8	100	No
A5b	29/5/14	215315	5740046	55	141.20	0.54	18.58	14.5	17.5	0.8	50	Yes
A6a	9/7/14	208616	5737364	55	171.52	1.38	97.70	93.7	96.7	0.8	100	No
A6b	27/5/14	208779	5737346	55	167.88	0.54	18.22	14.2	17.2	0.8	50	Yes
RB1	23/6/14	208525	5740347	55	232.36	0.70	92.30	88.1	91.1	0.8	50	No
TB1a	14/5/14	212070	5742075	55	143.97	0.52	12.91	8.7	11.7	0.8	50	No
TB1b ²	28/5/15	212068	5742075	55	143.97 ²	0.38 ⁵	19.00	19.0	17.5	0.8	50	No
TB1c ²	27/5/15	212066	5742075	55	143.97 ²	1.09 ⁵	36.50	36.0	33.0	0.8	50	No
TB2a	17/5/14	210790	5742057	55	174.16	N/A	17.10	13.7	16.7	0.8	50	No
TB2b ³	19/8/14	210865	5742030	55	-	0.63	7.19	3.7	6.7	0.4	50	No
TB2c ⁴	29/5/15	210820	5742222	55	153.21 ⁴	0.60 ⁵	2.80	2.8	1.5	0.8	50	No
TB3	30/5/14	208134	5741691	55	225.54	0.62	39.52	31.5	37.5	0.8	100	No
TB4a	22/5/14	209102	5742282	55	178.75	0.35	14.89	11.2	14.2	0.8	50	Yes
TB4b ²	20/8/14	209082	5742281	55	178.75 ²	0.56	7.67	4.2	7.2	0.4	50	No
TB4c ²	20/8/14	209112	5742281	55	178.75 ²	0.51	31.01	27.5	30.5	0.4	50	No
TB5	21/5/14	207224	5741809	55	229.10	0.62	32.58	29.0	32.0	0.8	50	No
TB6	19/5/14	205447	5741049	55	243.05	0.55	22.01	17.9	20.9	0.8	50	No
TB7	29/5/14	203872	5740074	55	224.34	0.62	9.41	5.2	8.2	0.8	50	Yes
TB8	28/5/14	210575	5739808	55	151.33	0.48	27.04	22.9	25.9	0.8	50	No
TB9	26/5/14	208632	5733485	55	156.10	0.62	12.03	7.7	10.7	0.8	50	Yes
TB10	21/5/14	204874	5737770	55	215.41	0.66	10.92	7.0	10.0	0.8	50	No
TB11	23/5/14	207199	5734762	55	134.20	0.58	10.90	7.0	10.0	0.8	50	Yes
TB12	27/5/14	207615	5738133	55	172.48	0.52	12.19	8.1	11.1	0.8	50	Yes
TB13	22/5/14	206082	5736875	55	188.88	0.56	13.18	9.0	12.0	0.8	50	No
TB14	21/8/14	203063	5737656	55	141.34	0.59	11.59	8.5	11.5	0.4	50	No
UBCk1	22/5/14	207367	5742477	55	217.30	0.58	21.47	16.5	19.5	0.8	50	Yes
UBCk2	22/5/14	207391	5743149	55	193.52	0.57	18.57	14.3	17.3	0.8	50	Yes
UDvCk	4/6/14	207138	5739967	55	240.80	0.49	60.98	55.8	58.8	0.4	100	No
109136	12/2/15	209563	5743713	55	176.24	0.64	40.00	37.0	28.0	0.8	50	No
PASS1	14/2/15	214626	5742548	55	122.2	0.61	10.0	4.0	9.0	0.4	50	No
PASS2	16/2/15	216082	5735799	55	136.88	0.57	9.8	4.8	8.8	0.4	50	No
PASS3	13/2/15	214267	5743206	55	143.89	0.60	10.0	4.0	9.0	0.4	50	No
PASS4	17/2/15	229173	5750021	55	137.52	0.62	8.0	2.0	7.0	0.4	50	No

1. Surface elevation taken from concrete at base of bore

2. At these two nested bore sites the coordinates of the second two bores have been estimated relative to the first bore installed at the site. As the sites are relatively flat, the base elevation of the bore has been estimated as the same as the first bore installed (this is considered to be accurate to within +-5cm).

3. The coordinates from this bore have been estimated from aerial imagery (considered to be accurate to within +- 20m).

4. At this bore the coordinates and elevation have been estimated based on surveying of the push tube sample location (associated with the tree water use study), which was located at essentially the same location. The coordinates are considered to be accurate to within +-2m, and elevation to within +-0.1m.

5. Stickup recorded prior to headwork construction (i.e. prior to installation of concrete pad) and only indicative.

* Unless otherwise indicated (m) refers to metres from ground level. AHD refers to the Australian height datum.

JACOBS

3.2.4 Bore Development

Bores are developed to remove introduced products, such as drilling materials, and to optimise the efficiency of the bore.

Monitoring bores were developed by removing water from the bore via air lift purging. Polyethylene tubing connected to an air compressor was gradually lowered down-hole with a continuous flow of air supplied by a compressor. Standing water in the bore is displaced by air and brought to the surface. Water was then allowed to flow through high pressure polyethylene piping secured to the top of the bore, and was collected in a vessel. The tubing was continuously lowered down the bore until the bottom was reached and the bore was purged of water. If yields from the bore were adequate, the tubing was left in the bore to provide a continuous flow of water from the aquifer to the surface for periods of time ranging from 0.5 to 5 hours. If yields were lower, the bore was allowed to recover for a period of time (0.5 days or greater) before being purged again.

The duration of development, volume of water extracted and sediment suspended in the extracted water were recorded and have been summarised in (Table 6). Additionally, the electrical conductivity (EC) of development water was measured for bores constructed via mud rotary drilling. Changes in EC during development can indicate a change between the extraction of remnant drilling fluids in the aquifer to natural groundwater in the aquifer. Drilling fluids are typically fresh (depending on the source water used to make the drilling mud) compared to natural groundwater and an increase in EC during development can indicate when natural groundwater is being drawn into the bore. However, because groundwater salinity across much of the study area is relatively fresh, the contrast is relatively small at some bores.

Table 6 Summary bore development details

Site	Date developed	Depth before (m)	Depth after (m)	Duration (hrs)	Volume extracted (L)	EC change (μS/cm)	Sediment removed
A1	15/7/14	41.54	41.54	03:00	250	110 - 520	Red brown clay, medium sand
A2	11/7/14	39.80	40.05	01:30	80	960 - 2,630	Dark brown mud
A3	13/6/14	11.20	13.08	02:00	20	N/A	Chocolate brown Silt
A4	15/7/14	40.80	40.50	03:00	250	260 - 495	Dark brown mud
A5a	15/7/14	97.91	98.20	02:00	700	50-220	Brown silt
A5b	17/6/14	17.92	17.95	02:00	160	N/A	Brown orange silt and fine sand
A6a	18/7/14	96.10	96.40	03:00	1600	95-300	Yellow brown silt
A6b	13/6/14	17.60	17.75	02:00	100	N/A	Medium to fine sands
RB1	18/7/14	92.74	93.50	02:30	160	70-120	Yellow brown silt
TB1a	19/6/14	11.28	12.31	02:00	120	N/A	Grey silt
TB1b	1/6/15	19.00	19.00	02:00	-40	N/A	N/A
TB1c	1/6/15	36.50	36.50	02:00	150	N/A	Yellow brown silt
TB2a	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TB2b	22/8/14	6.63	6.55	01:30	200	N/A	Orange-brown silty sand
TB2c	1/6/15	2.80	2.80	01:00	-20	N/A	N/A
TB3	16/7/14	36.50	38.90	04:00	25	1,850 - 1,650	Yellow brown silt
TB4a	19/6/14	14.44	14.48	00:30	-60	N/A	Nil
TB4b	22/8/14	6.77	6.82	01:30	15	N/A	Yellow brown silt sand
TB4c	22/8/14	30.45	31.01	00:15	-40	N/A	Nil
TB5	19/6/14	32.59	32.58	00:30	25	N/A	None visible
TB6	12/6/14	21.18	21.43	04:00	10	N/A	Medium to fine sands
TB7	18/6/14	8.71	8.73	01:30	45	N/A	Light brown-grey silt and fine sand
TB8	17/6/14	26.51	26.50	01:00	42	N/A	Orange brown silt
TB9	16/6/14	11.23	11.36	00:45	32	N/A	Orange brown silt
TB10	12/6/14	10.49	10.32	01:00	60	N/A	Red/brown silty clay
TB11	16/6/14	10.19	10.32	01:15	35	N/A	Brown silt
TB12	17/6/14	11.61	11.66	01:15	18	N/A	Orange brown silt
TB13	16/6/14	12.30	12.61	03:00	300	N/A	Orange brown silt
TB14	22/8/14	11.09	11.20	02:00	15	N/A	Dark brown silt
UBCk1	18/6/14	18.93	20.88	01:30	20	N/A	Grey-black fine sand and silt
UBCk2	18/6/14	17.30	17.92	01:30	60	N/A	Mid-grey silt
UDvCk	18/7/14	59.80	63.20	05:00	950	70 -120	Grey brown silty sands
109136	12/2/15	40.00	40.00	02:00	N/A	N/A	N/A
PASS1	4/3/15	10	10	01:00	~30	N/A	-
PASS2	4/3/15	9.8	9.8	01:00	~30	N/A	-
PASS3	4/3/15	10	10	01:00	~30	N/A	-
PASS4	4/3/15	8	8	01:00	~30	N/A	-

1. Negative volume indicates water added in attempt to clear screen.

2. N/A = bore dry or no water added during drilling so EC change is not an indicator of development.

Installation of new monitoring assets

3.3 Reinstatement of existing bores

The SKM (2013) monitoring review recommended that up to ten formerly monitored SOBN bores be considered for potential re-instatement and renewed monitoring. The purpose was to fill data gaps in the existing groundwater monitoring network in the vicinity of Boundary Creek. Subsequent to field inspection, seven of those ten bores were not reinstated, for reasons outlined below:

- Bores not able to be located A thorough field search for bores 109126, 109127, 109140 and 109144 was conducted, but these four bores were not able to be located, and for practical purposes can be assumed to be permanently lost / destroyed.
- Bores located but in poor condition and not able to be reinstated Bore 109136 was found but was unable to be repaired due to its poor condition (full of silt to the surface) and a replacement bore was drilled in close proximity to that bore. Bore 109131 involved the removal of tree roots and a suitable option for remediation could not be resolved. Chemical treatment would have damaged the bore and mechanical cutting the tree roots was not considered to provide a long term solution as the roots would simply grow back. No remedial action was attempted on this bore.
- Bores not required Bore 109142 was considered to be in such close proximity to another bore listed for reinstatement (also in good condition), that it was considered superfluous to monitoring requirements.

This left three bores for reinstatement: 109130, 109139 and 109143. These bores were inspected in the field and downhole camera footage was obtained to confirm their suitability for re-instatement. The specification provided to the drilling contractor for reinstatement of these bores is contained in Appendix D.

For the three SOBN bores, reinstatement involved development via airlifting to remove any accumulated sediment in the base of the bores, and re-development of the bore filter pack. A summary of the works conducted for the remaining three bores is outlined in Table 7. The location of these bores is shown in Figure 9. All bores are located in close proximity to Boundary Creek; one bore several hundred metres upstream of McDonalds Dam, one about 100 metres downstream and one around 200 metres downstream of the dam.

Site	Bore details	Works Conducted	Date works conducted	
109130 (YEO39)	Location: Approx. 100m downstream of McDonalds dam, east side Boundary Ck Installed: 1970	Developed the bore for approx. 1hr using airlift to remove sediment from screens	11 th February 2015	
	Total depth: 17.5m Screened: 8 – 15.5m, Casing diam & material: 50mm, PVC			
	Monitoring record : Monitored from 1986 to Nov 2010, however only one water level reading since (in Aug. 2012).			
109139	Location: Approx.100m upstream of McDonalds dam. Installed: 1987 Total depth: 11m Screened: 7 – 10m Casing diam & material: 50mm, PVC Monitoring record: Last monitored 1988	Developed the bore for approx. 1hr using airlift to remove sediment from screens Added approx. 500mm to existing PVC casing and cemented in a lockable steel standpipe Installed a marker post adjacent bore	11-13 th February 2015	
109143	Location: Approx. 200m downstream of McDonalds dam, west side of Boundary Ck Installed: 1987 Total Depth: 24m Screened: 11.5 – 17.5m, Casing diam & material: 50mm, PVC Last monitored: 1989	Developed the bore for approx. 1hr using airlift remove sediment from screens Cut around 500mm off existing PVC casing and cemented in a lockable steel standpipe Installed a marker post adjacent bore	11-13 th February 2015	

Table 7 Summary of SOBN bores reinstated

3.4 Installation of data loggers

Groundwater level loggers were installed in monitoring bores to record fluctuations in groundwater levels over time. The model of the datalogger was a Solinst Level Logger Edge.

Loggers have been installed in each of the new and reinstated bores, with the exception of four bores:

- TB2a as the bore is dry
- TB2b a nearby bore (TB2c) was considered to provide sufficient coverage and was deemed the more important of the two locations
- TB4a as the bore is dry
- TB4c a bore with only a minimal amount of groundwater in the screened interval

Loggers were attached to 1.2 or 2.0 mm diameter steel wire using wire rope grips. These were suspended from eye hooks that were drilled into PVC end caps fitted to the casing. Additional holes were drilled into end caps to allow the air pressure in the bore to equilibrate with atmospheric pressures during watertable fluctuations. The *Leveloggers* installed have a capacity to store up to 40,000 data points (approximately 4.5 years at 1 hour intervals) and have a battery life of 10 years (based on 1 reading per minute). Level readings have an accuracy of $\pm 5.0\%$ and the loggers have a lifetime calibration. Solinst Canada Ltd (Solinst) provides a 1 year limited warranty on all of the loggers deployed as part of the field investigations.

Loggers were deployed at various stages of bore construction in order to measure the hydraulic properties of the screened unit during the recovery period. In some bores that were drilled using mud rotary drilling, loggers were deployed directly after construction in order to measure the rate of falling water levels in the bore. In other bores, loggers were deployed after development to record the rate of water level rise. This data provided an additional test of aquifer hydraulic conductivity in conjunction to that obtained during slug tests. Given this, the depth at which some of the loggers are currently set may not be optimal. The loggers in the following bores will need to be adjusted to be within the optimal range of the data logger - A2, A6b, UBCk2, TB1b, TB1c. This is discussed further in Section 6.2.

After the bore had been completed, loggers were set to record groundwater levels at one hour intervals. This interval was selected to allow for a monitoring interval that could be used to determine rates of evaporation in the future. The data loggers would last 5 years at this monitoring interval.

Table 8 details the logger ID, date of deployment, logger type and the depth at which the logger is set. The number in the logger type code refers to the metres of water at which it will operate optimally (i.e. an M30 logger will operate optimally under 30 m of water or less). The level loggers operate by converting pressure readings into water levels, which are recorded and stored electronically within the level logger unit. Level loggers measure total changes in pressure within a bore (pressure applied to the logger from the water column in the bore and barometric pressure).

Two barologgers have also been installed to monitor barometric pressure and allow for correction of the water level data by removing the influence of atmospheric pressure. "Baro loggers" record changes in barometric pressure only and are deployed above the water column. The corrected water level is calculated by subtracting the barometric pressure from the water pressure in the data logger. The recorded fluctuations in the water column can then be calibrated to field water level measurements (i.e. dipping the water level in the bore with an electronic meter) in order to yield absolute water levels.

Manufacturer recommendations indicate that a single baro logger is suitable of calibrating barometric pressure changes for a distance of up to 30 km laterally from a logger or up to 300 m vertically from a logger. For the purpose of this study, baro loggers have been deployed in TB7 and A5b. These bores are located in the far west and far east of the study area, respectively, and as such can be used to correct for changes in barometric pressure resulting from weather patterns which typically move from west to east in this area. Given the total study area, two barologgers are sufficient to capture atmospheric pressure changes.

It should be noted that as loggers were often deployed immediately after construction or development, natural fluctuations in groundwater levels may not be reflected in the recorded data immediately from the deployment

date. Furthermore, slug tests conducted after logger deployment will also impact groundwater levels in many bores.

Table 8	Logger	deployment	details

Site	Deployment date	Logger ID	Logger type*	Set depth (m bgl)	Indicative water level (m bgl)
A1	18/7/14	0052033385	M30	35.52	12.75
A2	11/7/14	0052033369	M30	38.50	18.64
A3	13/6/14	0032034423	M10	9.12	1.63
A4	16/7/14	0052033389	M30	35.96	28.47
A5a	23/6/14	0052033352	M30	51.35	28.57
A5b (Barologger)	17/6/14	0012034356	M10	0.50	8.48
A5b	17/6/14	0032034424	M10	17.06	8.48
A6a	18/7/14	0042033460	M20	18.50	0.00
A6b	13/6/14	0032034438	M10	16.30	2.38
RB1	27/6/14	0052033381	M30	69.37	61.86
TB1a	19/6/14	0032034425	M10	8.47	0.11
TB1b	28/5/15	002034465	M10		-0.10
TB1c	28/5/15	002034441	M10	8.91	1.80
TB2a	No logger deployed -	- bore is dry			
TB2b	22/8/14	Logger initially dep	ployed but mov	ved to TB2c	
TB2c	29/5/15	0032034465	M10	~ 2.8	Dry
TB3	16/7/14	0042033458	M20	34.88	32.29
TB4a	No logger deployed -	- bore is dry			
TB4b	26/8/14	0032032036	M10	4.44	2.56
TB4c	No logger deployed -	 insufficient water in 	the base of th	e bore	
TB5	19/6/14	0032033518	M10	31.00	20.62
TB6	12/6/14	0032033512	M10	18.92	17.17
TB7 (Barologger)	18/6/14	0012434807	M10	0.50	
TB7	18/6/14	0032034446	M10	7.68	2.12
TB8	17/6/14	0042033477	M20	24.51	3.54
TB9	16/6/14	0032034430	M10	9.78	3.01
TB10	12/6/14	0032034414	M10	9.58	5.09
TB11	16/6/14	0032034432	M10	9.32	0.68
TB12	17/6/14	0032034415	M10	10.68	5.18
TB13	16/6/14	0032034417	M10	11.44	2.76
TB14	25/8/14	0032034427	M10	7.41	0.52
UBCk1	5/8/14	0042033376	M20	19.92	12.47
UBCk2	18/6/14	0032033502	M10	16.83	3.76
UDvCk	18/7/14	0052033376	M30	58.01	19.56
109130	21/7/14	0032034431	M10	13.30	11.21
109136	4/03/2015	111033615	M10	29.36	18.5
109140	3/9/14	0032034437	M10	7.80	6.39
109143	21/7/14	0032033509	M10	20.70	8.70
PASS1	5/3/2015	0032042270	M10	~ 8m	0.8
PASS2	5/3/2015	0032030703	M10	~ 8m	0.2
PASS3	Logger not yet deploy	yed			
PASS4	5/3/2015	0032038664	M10	~ 8m	2

* M10 means logger can monitor 10 m pressure head, M20 means 20 m pressure head and M30 means 30 m pressure head

3.5 Gamma logging

Gamma logging was conducted in most of the new monitoring bores and 12 established bores using a 4WD mounted gamma logging unit. The objective of the undertaking gamma logging on the new bores was to allow better definition of the location of clayey and sandy layers within the profile, i.e. improve logging of the bores than can be achieved from description of the drill cuttings alone. In turn this information feeds into building the geological understanding of the area, and is used in development of cross sections and the geological model. The logging was conducted over the period $15^{th} - 24^{th}$ September 2014, and included bores drilled in the first two mobilisations but not the latter two mobilisations. Hence the four PASS bores, 109136 (replacement bore), TB2c, TB1b and TB1c have not been gamma logged.

The process involves lowering the measuring device, also knowns as a sonde, down a borehole to measure the amount of naturally occurring gamma radiation emitted from the various geological materials in the stratigraphic column. The amount of gamma radiation produced is generally related to the abundance of radioactive potassium in different rock materials. In particular, clays tend to have a high potassium content and thus, gamma logging is particularly useful in identifying the abundance of clay throughout the profile.

In contrast, clean sands are principally composed of silica (SiO₂) which generate very low amounts of gamma radiation and thus, low gamma counts are often indicative of sand dominated units. Similarly, ligneous material commonly produces gamma counts that approach zero and often yield counts even lower than clean sands.

The gamma logs were recorded digitally and have been imported into gINT and illustrated in Appendix A. In bores that were not newly constructed (and not presented in gINT), results from gamma logs have been presented separately in Appendix E.

An example of the results and outputs from gamma logging in TB3 is provided Figure 11. The pink shaded areas of the gamma log presented in Figure 11 highlight sections of the profile with higher count rates of gamma radiation, while those shaded in green highlight sections of the profile with particularly low gamma counts. The red highlighted sections are indicative of clay rich material (which typically has a relatively low hydraulic conductivity) while the green highlighted sections are typical of sand rich material (which typically has a relatively has a relatively high hydraulic conductivity).

The gamma logs allow the attributes of various lithologies noted in field to be further refined in order to more accurately characterise the lithology at the bore site. In particular gamma logs provide a more accurate identification of the depth of lithology transition than is commonly provided by the sampling methods allowed by the drilling techniques used in this study. Additionally, gamma logs can help determine variations in the stratigraphy that are too small to recognise in field from the 'disturbed' sampling techniques used during the drilling program.

The highlighting of 'high' and 'low' sections of the gamma log (pink and green respectively) shows the range of gamma responses, which illustrates relatively pure clays and clean sands. Hence for example, the material between 15-20m in Figure 11 is also likely to be a clay, but with some silts or sands leading to the slightly lower gamma count compared to the spike at 15m. Similarly, most of the screened interval in TB3 is likely to be a sand, but with a proportion of clay in some intervals.

It has been noted that in a number of bores, gamma counts increase immediately above screened sections (suggesting clays) and decline rapidly (suggesting sands) within the screened section of the bore. The consistent nature of these results in newly constructed bores suggests that this trend is more likely to indicate the use of bentonite (an anhydrous clay material) as a seal during bore construction, rather than natural variations in the stratigraphy.

Figure 11 Example gINT output and gamma log from TB03 (pink shaded areas highlight sections with relatively high gamma counts, indicative of clays; green shading highlights sections with particularly low gamma counts – indicative of relatively 'clean' sands/gravels).

4. Hydraulic Testing

Hydraulic testing was undertaken on the monitoring bores to determine the aquifer parameters at that location. The testing is predominantly focussed on estimating the horizontal hydraulic conductivity.

4.1 Method

Hydraulic testing was carried out on a total of 30 bores (26 new bores and 4 established bores) between the 4th August 2014 and 9th September 2014. The method of hydraulic testing varied at each bore according to the bore casing diameter, bore depth, depth to the watertable and recovery rate. Hydraulic testing was not completed on bores drilled in the third and fourth mobilisations.

Bores that were 50 mm in diameter were typically tested by removing a slug of water using a bailer capable of removing up to 2.0 L of water (approximately 1 m of water in a 50 mm diameter bore). The exception to this was RB1 in which the watertable was significantly further below ground level than other 50 mm bores (>60 m) and removal of water via bailer was difficult. As such, this bore was tested by adding a slug of about 1.5 L in order to displace the water in the bore and measure the rate of the falling water level.

Bores that were 100 mm in diameter or greater were tested by the addition of a weighted PVC slug with the capacity to displace around 1 m of water in a 100 mm diameter bore.

Generally, slug tests were initially logged at a frequency of one reading per minute. If recovery rates were relatively quick (<1 hr), subsequent slug tests were recorded at 1 second intervals. If recovery rates were moderate (<1 day), subsequent slug tests were recorded at either 15 seconds or 1 minute intervals. If recovery rates were slow (days to weeks), these were recorded at a frequency of 1 hour. For these very slow recovery bores, it was often necessary to use groundwater responses to development for hydraulic characterisation, as groundwater levels had not returned to static conditions between development and subsequent field works.

The hydraulic conductivity (k) value indicated by the slug test was determined using the Bouwer-Rice (1976) analytical method in the aquifer testing software program Aqtesolve.

4.2 Results and discussion

Figure 12 shows the recovery of groundwater levels in bore A3 in response to the removal of approximately 2L of water via bailer. The curve shown is typical of the recovery curves for bores that were slug tested during field investigations. The analysis and resulting hydraulic conductivity values generated for each slug test has been presented in full in Appendix F and summarised in Table 9.

The hydrogeological unit (HGU) assigned to each bore was determined according to the lithology of the screened section, the outcropping geology of the area and the conceptual hydrogeological framework. The results from Table 9 are plotted in Figure 13, which k values grouped according to HGU and screen depth.

Figure 12 Displacement curve for assessing hydraulic conductivity in bore A3

Figure 13 Hydraulic conductivity (k) values in monitoring bores grouped by hydrogeological units

Bore ID	D Slug test type Approximate Number of		K value ¹	Formation	Screen	
		duration	tests	(m/day)		depth ⁺ (m)
A1	PVC - Falling	2 days	1	5.8E-04	MTD	39
A2	Development - Rising	45 days	1	1.8E-05	MTD	37.3
A3	Bail - Rising	5 hrs	2	8.0E-03	MTD	11
A4	Development - Rising	51 days	1	7.5E-05	MTD	36.8
A5a	Development - Rising	35 days	1	8.0E-05	MTD	96.6
A5b	Bail - Rising	10 min	3	3.0E-01	MTD	16
A6a	Development -Rising	3 days	2	3.6E-03	MTD	95.2
A6b	Bail - Rising	1 hr	1	2.8E-02	MTD	15.65
RB1	Water addition - Falling	5 hrs	1	6.8E-03	BSE	89.6
TB1a	Bail - Rising	20 min	2	1.6E-01	QA	10.15
Tb2b	Bail - Rising	5 min	3	4.7E+00	QA	5.19
TB3	PVC - Falling	6 days	1	2.9E-04	LTA	34.5
TB4b	Bail - Rising	7 hrs	1	5.0E-03	QA	5.67
TB5	Bail - Rising	10 days	1	9.2E-05	LTA	30.5
TB6	Bail - Rising	10 min	2	2.2E-01	LTA	19.35
TB7	Bail - Rising	10 min	2	2.0E-01	LTA	6.7
TB8	Bail - Rising	12 hrs	2	2.6E-03	MTD	24.46
TB9	Bail - Rising	10 mins	2	2.4E-01	QA	9.2
TB10	Bail - Rising	1 hr	2	7.4E-02	QA	8.5
TB11	Bail - Rising	30 mins	1	7.8E-02	QA	8.5
TB12	Bail - Rising	1 hr	2	2.0E-02	QA	9.56
TB13	Bail - Rising	10 min	2	2.8E-01	QA	10.5
TB14	Bail - Rising	3 hr	1	3.0E-02	QA	10
UBCk1	Bail - Rising	10 hr	2	3.0E-03	BSE	18
UBCk2	Bail - Rising	5 hr	1	7.2E-03	BSE	15.84
UDvCk	PVC - Falling/Rising	2 hrs	5	1.1E-01	LTA	57.3
64235	PVC - Falling	10 min	1	5.4E-01	LMTA	185
109130	Bail - Rising	5 hr	1	9.7E-03	LTA	12
109140	Bail - Rising	5 days	1	1.6E-04	LTA	8.5
109143	Bail - Rising	5 min	2	1.5E+00	LTA	20 ²

Table 9 Summarised slug test and resulting hydraulic conductivity for each monitoring bore

1. Average k value presented where multiple slug tests have been conducted

2. Screen depths presented have been calculated from ground surface to the middle of the screen

Quaternary Alluvium

Slug tests conducted in the Quaternary Alluvium (QA) yielded reasonably high hydraulic conductivity values ranging from 0.005 to 4.7 m/day and an average value of 0.63 m/day. This is largely due to the coarse nature of the sediments in the QA. As the deposits have formed relatively recently along drainage lines, the high energy of these environments will generally include the deposition of layers with coarser sediments. The gamma logs further indicate the absence of significant clay layers in the QA.

Middle Tertiary Aquitard (MTD)

Bores screened in the MTD appear to show a broad correlation with screen depth. Bores screened at depths less than 25 m (TB8, A3, A5b and A6b) generally have higher hydraulic conductivities compared to deeper bores. Hydraulic conductivities in these shallow bores range from 0.026 to 0.3 m/day. In contrast, most bores screened below 35 m depth (A1, A2, A4, A5a) have relatively low hydraulic conductivities, ranging from 1.8×10^{-5} to 5.8×10^{-4} m/day. The hydraulic conductivity recorded in A6a was 3.6×10^{-3} m/day and is considered slightly high for a bore screened below 35 m in the MTD.

Lower Middle Tertiary Aquifer (LMTA)

One bore screened in the Lower Middle Tertiary Aquifer (LMTA), also known as the Clifton Formation, was slug tested (64235). Results indicate a hydraulic conductivity of 0.54 m/d in the LMTA which is consistent with the unit acting as a minor aquifer, similar to the QA.

Lower Tertiary Aquifer (LTA)

The hydraulic conductivity values determined from bores screening the LTA were variable. Generally the hydraulic conductivity declines with depth as bores screened below 30 m depth have lower conductivities.

It should be noted that as vehicle access to 10943 and 10940 prevented the development of these bores during field investigations, the hydraulic conductivity values presented are not discussed further. Bore 109143 reported the highest conductivity value of 1.5 m/day, while Bore 109140 reported a value of 1.6×10^{-4} .

Of the remaining bores screened in the LTA, bores screened at depths greater than 30 m (TB3 and TB5) had the lowest hydraulic conductivities, ranging from 9.2×10^{-5} to 2.9×10^{-4} m/day. The exception to this is UDvCk which while screened at around 57 m depth, is screened in particularly coarse material (sandy gravels) and a relatively high hydraulic conductivity (1.1×10^{-1} m/day) at this site.

Bores screened at shallower (<20 m) depths in the LTA (TB6 and TB7) yielded higher hydraulic conductivities representative of a minor aquifer, with values ranging from 0.20 to 0.22 m/day. It should be noted that with the exception of TB7, both shallow and deeper screened bores in the LTA identified clay layers.

Basement

The hydraulic conductivity of the basement appears to be relatively well constrained, with slug tests yielding hydraulic conductivity values falling in a relatively narrow range of 3 to 7.2×10^{-3} m/day. It is noted however that this is based on three tests only. However, the results suggest that the basement in this area has a moderate hydraulic conductivity (compared to other hydrogeological units in the area) and should be reviewed in the update of the numerical model.

5. Groundwater Quality

Sampling of groundwater from 33 bores (28 newly installed, 2 existing bores and 3 reinstated bores) occurred between the 27th August 2014 and the 9th September 2014. Groundwater samples were analysed in the field to determine the salinity and pH and samples from aquitard bores were also analysed in the laboratory for major ions.

This section outlines the methods used to conduct the groundwater samples and the results. A discussion of the results is also provided.

5.1 Method

Where sites were accessible by vehicle, water was extracted using a 12V electrical pump with the capacity to pump approximately 60 m of head. Where the screened interval was less than 60 m below ground surface (the majority of bores), the pump was lowered to a depth around 1 m above the screen. If the recovery rate of the bore was sufficient, 3 bore volumes were removed before a water sample was collected for analysis. If recovery in the bore was low, such that water levels were unlikely to recover within a day, the pump was removed and a sample collected from the screened depth using a bailer or direct interval sampler. If water levels in the bore were likely to recover within a day, further pumping was conducted at a later time (after some recovery) before a sample was taken via bailer or direct interval sampler.

Where the screen depth was greater than 60 m below ground level and recovery rates were low, water was removed to 60 m using an electrical pump before a sample was taken from the screened section using a direct interval sampler. Where vehicle access was not possible (TB5, UBCk2, 109130, 109140 and 109143) water was extracted using a hand bailer.

Water was collected in polyethylene containers and measured in field using a TPS 90FL water quality meter EC, pH, dissolved oxygen (DO) and temperature. Containers were triple rinsed with sample water before field parameters were measured. Water quality probes were submerged in sample and parameters were allowed to equilibrate before being recorded.

Samples for laboratory analysis were collected in polyethylene bottles and placed in coolers in the field. These were then stored in a refrigerator within 8 hours of collection and transported for laboratory analysis within 5 days of collection.

All groundwater samples were analysed in the field and laboratory for salinity. Groundwater samples from bores monitoring the MTD were also analysed for major ions in the laboratory.

5.2 Results and discussion

The results of the field parameters are summarised in Table 10. The main purpose of the groundwater sampling was to determine the salinity and pH of the groundwater and a discussion of the results is provided below.

5.2.1 Groundwater Salinity

Groundwater salinity can be measured as Electrical Conductivity (EC μ s/cm) or Total Dissolved Solids (TDS mg/L). EC is easily measured in the field, while TDS must be determined in the laboratory. EC can be readily converted to TDS using a conversion factor ranging between 0.6 and 0.7. The conversion factor becomes increasingly uncertain in high salinity waters (>58,000 EC or 35,000 TDS mg/L), especially for salinity concentration above the point of gypsum or halite (salt) precipitation. The groundwater in the Barwon Downs region is not highly saline and a conversion factor of 0.65 has been applied to the EC field measurements to estimate the salinity as TDS (mg/L).

Salinity was measured in the field as EC and in the laboratory as EC and TDS in 32 samples. The field results are presented in Table 10 and the laboratory results are presented in Table 11.

Groundwater salinity measured as EC in the laboratory ranged from 198 to 10,000 EC μ S/cm, depending on the hydrogeological unit intersected. Figure 14 shows the range of salinity in each bore grouped by hydrogeological units.

Figure 14 Groundwater salinity measured as EC in the field by hydrogeological unit at each bore

Groundwater from bores screened in the Quaternary Alluvium generally yielded low EC's, ranging from 200 to 460 μ S/cm. This is typical of a shallow aquifer with short groundwater flow paths and recharged from rainfall and surface water. TB1a is an exception to this where the groundwater salinity was 1,430 EC. This bore is monitoring the shallow groundwater beneath Big Swamp which is a groundwater discharge site. Evaporation from the groundwater system increases the groundwater salinity in this local area.

Groundwater salinity in the MTD has higher salinity, ranging from 1,070 to 3,890 μ S/cm. This is considered to be typical of the unit, where longer flow paths allow for more evaporation and rock water interaction which increases the salinity.

Groundwater salinity in the LTA is variable, ranging from 170 to 8,230 μ S/cm, however the majority of groundwater sampled falls within the range of 500 to 1,500 μ S/cm. This is consistent with an intermediate groundwater residence time and the current conceptual hydrogeological understanding. Groundwater salinity is particularly low at TB7 (170 μ S/cm) which is a shallow bore located in the recharge (unconfined) area of the LTA. Groundwater from TB3 has a particularly high EC of 10,000 μ S/cm. It is noted that the basement is thought to be relatively shallow in this area and given the relatively deep screen at TB3 (about 35 m), it is possible that this water is impacted by upward leakage of saline water from the basement.

Groundwater from the basement has a relatively high EC compared to most other units, ranging from 890 to 5,440 μ S/cm, with an average EC of 3,490 μ S/cm (based on 3 samples).

Table 10 Field water quality parameters

Site ID	Date	SWL	EC	рН
Site ib	Date	(m-bgl)	μS/cm	units
A1	8/09/14	12.59	2,870	7.06
A2	4/09/14	15.32	1,786	7.56
A3	28/08/14	1.68	2,130	6.26
A4	4/09/14	27.27	1,386	5.45
A5a	8/09/14	13.12	1,091	7.79
A5b	27/08/14	7.65	4,260	5.13
A6a	9/09/14	>0.50	1,436	7.39
A6b	28/08/14	3.29	1,507	11.2
RB1	5/09/14	61.16	891	8.44
109136				
TB1a	28/08/14	0.31	1,185	6.41
TB1b	Not sampled			•
TB1c	Not sampled			
TB2a	4/09/14	Dry	N/A	N/A
TB2b	4/09/14	2.15	220	5.07
TB2c	Not sampled (bore dry)			•
TB3	5/09/14	33.03	8,230	13.36
TB4a	4/09/14	Dry	N/A	N/A
TB4b	4/09/14	2.67	195	6.04
TB4c	4/09/14	28.95	606	6.6
TB5	3/09/14	20.75	1,226	6.32
TB6	27/08/14	17.23	1,376	8.03
TB7	27/08/14	2.20	167	4.95
TB8	27/08/14	3.56	933	6.62
TB9	28/08/14	2.90	304	5.88
TB10	28/08/14	4.67	209	5.41
TB11	28/08/14	0.71	462	6.61
TB12	28/08/14	4.94	411	5.46
TB13	28/08/14	2.52	362	5.77
TB14	5/09/14	0.44	401	6.43
UBCk1	27/08/14	12.56	4,140	5.88
UBCk2	5/09/14	3.75	5,440	6.87
UDvCk	4/09/14	28.07	545	6.87
PASS1	Not sampled – bore no	t drilled at time of sampl	ing	•
PASS2	Not sampled – bore no	t drilled at time of sampl	ing	
PASS3	Not sampled – bore no	t drilled at time of sampl	ing	
PASS4	Not sampled – bore no	t drilled at time of sampl	ing	
64234	9/09/14	>1.00	1,033	7.52
64235	8/09/14	28	708	6.78
109130	9/09/14	10.95	4,460	2.46
109140	9/09/14	6.36	801	5.77
109143	3/09/14	8.62	633	5.09

Bore	Hydrogeological Unit	EC (µS/cm)	TDS (mg/L)
TB1a	Quaternary alluvium	1,430	930
TB2b	Quaternary alluvium	245	159
ТВЗ	LTA	10,000	6,500
TB4b	Quaternary alluvium	198	129
TB4c	LTA	694	451
TB5	LTA	1,420	923
TB6	LTA	1,320	858
ТВ7	LTA	224	146
TB8	MTD	1,070	696
ТВ9	Quaternary alluvium	332	216
TB10	Quaternary alluvium	204	133
TB11	Quaternary alluvium	554	360
TB12	Quaternary alluvium	450	292
TB13	Quaternary alluvium	398	259
TB14	Quaternary alluvium	371	241
A1	МТО	3,330	2,160
A2	MTD	2,230	1,450
A3	MTD	2,470	1,600
A4	МТО	1,400	910
A5a	MTD	1,190	774
A5b	MTD	3,890	2,530
A6a	MTD	1,650	1,070
A6b	MTD	1,670	1,080
RB1	Basement	1,010	656
UBCk1	Basement	4,940	3,210
UBCk2	Basement	6,450	4,190
UDVCk	LTA	620	403
64234	LTA	1,170	760
64235	LMTA	760	494

Table 11 Laboratory EC and converted TDS data (assuming conversion factor of 0.65)

5.2.2 pH

Groundwater pH was measured in the field in 32 samples (see Table 10) and 10 samples were analysed in the laboratory (see Table 12). Field pH results were consistent with laboratory pH results and showed an approximately 1:1 relationship, indicating field pH measurements were of good quality. Laboratory pH data have been reported below in Table 12, however the discussion below is based on field data, which provides a more complete data set.

The pH in the Quaternary aquifer ranged between 5.4 and 6.6, with an average of 6. The pH in the MTD ranged between 5.5 and 7.8, with an average of 7.1. The pH in the LTA generally ranged between 5 and 8.1, with one bore (TB3) reporting a significantly higher value of 13.4.

Higher pH values may be associated with carbonate dissolution during longer groundwater residence times and greater interaction with geological units such as the Gellibrand and Narrawaturk Marls. Conversely, terrestrial vegetation monitoring bores screened closer to the surface have less potential to interact with minerals in the aquifer and more potential to be impacted by the vertical infiltration humic acids or waters affected by acid sulphate soils. Such factors may be contributing to the relatively low pH values found in shallow groundwater.

	General		Alkalinity				Anions		Cations				
ID	рН	Hard	ОН	HCO ₃	CO ₃	Tot	SO ₄	CI	F	Ca	Mg	Na	K
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
A1	7.4	997	<1	<1	276	276	47	867	0.4	287	68	286	11
A2	7.7	661	<1	<1	230	230	517	283	0.3	128	83	265	12
A3	6.1	263	<1	<1	43	43	171	661	0.2	56	30	339	7
A4	4.2	192	<1	<1	<1	<1	108	417	0.3	44	20	190	11
A5a	7.9	189	<1	<1	197	197	134	153	0.4	46	18	146	16
A5b	5.5	470	<1	<1	8	8	36	1160	0.1	66	74	521	2
A6a	7.8	477	<1	<1	114	114	14	439	0.3	120	43	103	14
A6b	10.3	196	12	20	<1	32	29	485	0.4	72	4	221	5
64234	8.0	219	<1	<1	116	116	<1	298	0.2	40	29	126	13
64235	7.7	137	<1	<1	53	53	<1	210	0.1	27	17	75	10

Table 12 General water quality parameters

Hardness and alkalinity reported in units of mg/L as $CaCO_3$

5.2.3 Major lons

Chloride (Cl) and sodium (Na) dominate the major ion chemistry of groundwater from bores analysed. This contributed an average of 497 and 227 mg/L, respectively, with an average TDS concentration of 1,521 mg/L. Both sodium and chloride increased linearly with TDS (Figure 15).

The remaining total dissolved solids were dominated by sulphate (SO₄), carbonate (CO₃) and calcium (Ca). While sodium and chloride dominate the groundwater chemistry, they do not show a 1:1 molar correlation as would be expected if halite dissolution were driving changes in salinity (Herczeg et al., 2001). Similarly, calcium and bicarbonate (HCO₃) do not show a 1:2 molar ratio as would be expected if carbonate dissolution was dominating groundwater chemistry. While carbonate dissolution does not appear to be controlling groundwater salinity, it is still likely that that some carbonate dissolution is occurring, especially given the abundance of dissolved calcium and carbonate in groundwater and the prevalence of carbonates in hydrogeological units in the area. As such, it is plausible that carbonate dissolution is regulating the pseudo-neutral to slightly basic conditions observed in some bores.

Figure 15 Co-variance between CI and TDS, and Na and TDS in groundwater samples

6. Conclusions and Recommendations

6.1 Conclusions

The field program in 2014/15 has resulted in the addition of 40 new monitoring bores, which includes 35 new bores, 2 replacement bores and 3 existing bores were reinstated. The bores have been drilled to address the knowledge gaps identified by Jacobs (as SKM) in 2013.

This report draws the following conclusions:

- Dataloggers were installed in all bores with the exception of bores that were dry or not considered to add significant value (e.g. TB2a, TB2b, TB4a and TB4c).
- Gamma logging was undertaken on bores where practical, as well as an additional 12 existing bores to collect information on the presence of confining clay layers in the hydrogeological profile. This information will be available for the update of the geological model.
- Hydraulic testing, in the form of slug tests, was undertaken on 30 bores to understand the range of aquifer parameters in each formation. The results are summarised below.
 - Horizontal hydraulic conductivity in the basement was found to range between 3 and 7.2 x 10⁻³ m/d which is more permeable that expected.
 - Horizontal hydraulic conductivity in the in the LTA showed considerable variability ranging between 0.2 and 9.2 x 10⁻⁵. These values are lower than previous estimates. Previous estimates of hydraulic conductivity are based on more rigorous hydraulic testing such as pumping tests and drawdown analysis, that assess the hydraulic conductivity over a larger area. Results from slug test provide an indication of the conductivity at the specific location of the bore.
 - The Lower Mid Tertiary Aquifer (LMTD), also known as the Clifton Formation, is a minor aquifer with a horizontal conductivity of 0.54 m/d.
 - Hydraulic conductivities in the MTD is higher in the top 30 m of the formation compared to the below 35 m depth. The horizontal conductivity of the shallow depths ranges between 0.026 to 0.3 m/day. In contrast, the horizontal conductivity in deeper bores ranges from 1.8×10⁻⁵ to 5.8×10⁻⁴ m/day.
 - The hydraulic conductivity of the shallow alluvial materials or Quaternary Alluium (QA) was reasonably high (0.005 to 4.7 m/day) which is consistent with the QA being a minor aquifer.
- Groundwater samples were analysed for salinity and pH and some aquitard bores were analysed for major ions.
 - Groundwater stored in the shallow alluvial materials (QA) with higher hydraulic conductivity was found to contain relatively fresh (<500 µS/cm EC) groundwater compared to other hydrogeological units. G
 - \circ roundwater collected from the basement was generally higher in salinity (average EC around 3,500 μ S/cm) and likely to reflect significantly longer groundwater flow paths through low permeability layers.

6.2 Recommendations

This report makes the following recommendations in relation to works not completed and ongoing monitoring:

- Data loggers should be downloaded at 4 month intervals in the first year after deployment to limit the risk of significant data loss in the event of logger malfunction (and enable a claim within the one year logger warranty period, if required). A download frequency of once every 6 months after the first year is recommended.
- The following bores should be surveyed for surface elevation TBb, TB1c TB2b TB2c TB4b and TB4c.
- The waterlevel in TB4c should be monitored and if the waterlevels increases so it is above the screen a data logger should be installed.
- Dataloggers in the bores listed in the table below require adjustment so they lie within the calibrated range of the logger.

Bore	Logger type	Current logger depth	Recommended logger depth and action
A2	M30	35.5 m	Raise the logger 5 m to 30 m depth
A6a	M10	18.5 m	Raise the logger 5 m to 13 m depth
A6b	M10	NA	Logger did not download in 2016. Logger has been fixed and needs to be re-deployed. Recommended depth is 16 m.
UBCk2	M10	16.8 m	Raise the logger 5 m to 12 m depth.
TB1b	M10	~10 m	Raise the logger 2 m to 8 m depth.
TB1c	M10	NA	Logger did not download in 2016. Logger has been fixed and needs to be re-deployed. Recommended depth is
109136	M10	NA	Logger did not download in 2016. Logger has been fixed and needs to be re-deployed. Recommended depth is 25 m.

7. References

SKM (2013) Barwon Downs Monitoring Program. Stage 1 – Field investigations and monitoring program scope.

Jacobs (2014) Barwon Downs Stage 1 Field Works – Potential acid sulphate soils field investigations report. Final September 2014

Appendix A. Bore logs for new monitoring bores

	S	K	M					BO	REH	OL	E No. A1
Proje Job N	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 12/6/14 Bore dia: 200 mm	- 13/6/14	Driller: Go Rig: Mud F	Drill - Allen Rotary	Northings Eastings: RLNS:	: 574030 216799 164.2V)3.5n 9.5ml VGS	nN E Logged: Yes 84 - MZ 54
FIELD [DATA	4	SOIL	DESCRIPTION			gamma log pr	ROFILE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified cl particle characte	assification, colour, structure, ristics, minor components	15	cou 30	nt per second (c	cps) 75 90	105	ground water	drilling method, well construction, water and additional observations
163 162 161 162 161 162 161 162 161 162 161 162 161 162 161 162 163 164 155 155 155 155 155 155 155 155 155 151 152 151 152 153 154 155 151 152 153 144 144 144 144 144 144 144 144 141 141 141 141 141 141 141 141 1	2 4 - 4 - - - - - - - - - - - - -		Orange-brown CLAY hard, coherent, medi medium grained san Light grey CLAY, red to firm, coherent, me to 4 mm Light brown to orang mottles, soft, moist, of Light orange to brow mottles, very soft, inc Light orange to brow mottles, firm to soft, Light orange to brow mottles, firm, moist, Light orange to brow mottles, firm, moist, Light orange to brow mottles, firm, moist, Light orange to brow red-brown mottles, fi approximately 1/3 co 2-3mm, up to 5mm) Red-brown CLAY, medium to low plasti Light grey CLAY, red to moderate plasticity Drange-brown CLAY moist, soft, low plast grey brown at 18m Orange-brown to gre mottles, moist, soft to some trace medium Light brown CLAY, fi gravels up to 8mm	grey mottles, moist, firm to im to high plasticity, trace dark brown mottles, moist, soft dium plasticity, trace gravels up a CLAY, white and brown-red oherent a CLAY, white and brown-red oherent 6 n CLAY, light grey and red-brown moist, coherent 10 n CLAY, light grey and red-brown moist, coherent 10 n CLAY, light grey and red-brown moist, coherent, contains arse sands to gravels (mostly bist, soft to firm, coherent, city, 14 brown mottles, moist, soft, low , becoming incoherent 18 18 18 18 18 18 18 18 18 18							3% bentonite / cement mix
_ = W	ater I	level (stat	GROUNDWATER SY tic)	MBOLS ring drilling) — = Outflow / Infle	DW		= Bulk Sample	FIELD DATA = Disturbed S	SYMBOL Sample	S =	Undisturbed Tube Sample

SKN	Λ					BOF	REH	OL	E No. A2
Project: Monitorin Job No: BW0757	ng Program C 5 C E	Client: Barwon Water Completion Date: 3/7/14 Sore dia: 114 mm	- 3/7/14	Driller: Go Dr Rig: Mud rota	ill - Allen ary	Northings: Eastings: RLNS:	574186 212783 155.6W	62.1m 8.5mE /GS	N E Logged: Yes 84 - MZ 54
FIELD DATA	SOIL DESCR	RIPTION		GA	amma log prof	ILE			COMMENTS
sample type elevation (m) depth (m) graphic log	soil type, unified classific particle characteristics	ation, colour, structure, s, minor components	15	count 30 45	per second (cps)) 5 90	105 	ground water	drilling method, well construction, water and additional observations
130 26 129 26 128 28 127 28 128 28 127 30 126 30 127 31 128 32 127 32 126 30 127 32 124 32 124 32 124 32 124 32 124 32 120 36 38	Black-brown CLAY, moist, f cohesive (continued)	im, high plasticity, 26 28 30 32 34 34 36 36 42 44 44 46 48 48 48 50 5	flow			FIELD DATA	SYMBOL	S	Bentonite Pel-Plug pellets 5/2 gravel 0.8 mm aperture screen

	S	K	M				BO	REH	OL	E No. A3
Proj Job	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 30/5/1 Bore dia: 114 mm	4 - 30/5/14	Driller: Matrix Rig: Solid auger	Northings Eastings: RLNS:	574242 212792 140.7V	28.1n 2.2ml /GS	Sheet 1 of 1 nN E Logged: Yes 84 - MZ 54
FIELD	DATA	A Contraction of the second se	SOIL D	ESCRIPTION		Gamma Log Pro	FILE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified cla: particle character	ssification, colour, structure, istics, minor components	15	count per second (cp:	s) 75 90	105	ground water	drilling method, well construction, water and additional observations
is is 140 139 134 137 136 137 136 137 136 137 136 137 136 137 136 137 136 137 131 132 131 132 131 132 131 132 131 132 131 132 132 132 132 124 125 124 125 124 125 124 125 124 125 124 125 121 120 119 118 117	$\frac{5}{2}$		Red-brown CLAY, mod firm, coherent, modera Orange-brown CLAY, fi Medium grey CLAY, fi Dark brown to black-bi moisture Dark brown to black-bi very moist Light brown-yellow CL mottles, very firm becc	derate to low moisture content, te to low plasticity 						 3% bentonite / cement grout Bentonite chips 5/2 gravel pack 0.4 mm aperture screen
T = M	/ater le	evel (stat	GROUNDWATER SYM	BOLS ng drilling) → ► = Outflow / Ir	flow	= Bulk Sample	FIELD DATA = Disturbed S	SYMBOL ample	S =	Undisturbed Tube Sample

	S	K	M					BOF	REH	OL	E No. A4
Proje Job I	ect: No:	Monito BW07	ring Program 575	Client: Barwon Water Completion Date: 14/6/1 Bore dia: 200 mm	4 - 14/6/14	Driller: Go Drill - Rig: Mud rotary	Allen	Northings: Eastings: RLNS:	574437 213948 208.9W	/2.6m 8.5mf /GS	nN E Logged: Yes 84 - MZ 54
FIELD	DATA		SOIL D	ESCRIPTION		GAM	Ma log profi	LE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified cla particle character	ssification, colour, structure, istics, minor components	15	count per 30 45	second (cps)	5 90	105 	ground water	drilling method, well construction, water and additional observations
183- 182- 182- 182- 182- 182- 182- 182- 182- 182- 182- 182- 182- 179- 169- 168- 168- 169-	26 28 30 30 32 32 34 34 36 38 38 38 38 38 38 38 38 50		Medium brown CLAY, plasticity	rey CLAY, moist, moderate to 38 m. (continued) 26 28 28 28 30 30 30 30 30 30 30 30 30 30							Bentonite chips 5/2 gravel 0.8 mm aperture screen Collapse
_ = Wa	ater le	evel (stat	GROUNDWATER SYN ic)	IBOLS ng drilling)	nflow	= Bu	lk Sample 🛛 🕈	FIELD DATA = Disturbed S	SYMBOL ample	S =	Undisturbed Tube Sample

	S	K	M					BOR	EHO	LE	No. A5a Sheet 1 of 4
Proje Job N	ct: lo:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 26/6/14 Bore dia: 190 mm	4 - 27/6/14	Driller: Go Drill - A Rig: Mud rotary	Allen	Northings: Eastings: RLNS:	574004 215314 141.2W	3.4m .9m[/GS	nN E Logged: Yes 84 - MZ 54
FIELD D	ATA	Ň	SOIL DE	SCRIPTION		GAMM	A LOG PROFIL	.E			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count per s	second (cps) 60 75	90	105	ground water	drilling method, well construction, water and additional observations
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$			Medium chocolate brow cohesive, low plasticity present Red-orange CLAY with high plasticity, cohesive Light grey CLAY with in cohesive, moderate to 1 content Light grey CLAY with lig to firm, high plasticity Light grey CLAY with lig moisture content, firm t Light grey CLAY with lig moisture content, firm t Light grey CLAY with lig moist low to firm, mod Medium orange/brown moist, soft to firm, mod Medium orange/brown silty moist, soft to firm, mod Medium orange/brown silty moist, soft, low plasticit Light orange/brown silty moist, soft to firm, mod Medium orange/brown plasticity Light grey silty CLAY, s moisture content, poor low plasticity Medium orange/brown moderate to low moist becoming friable, low p	n CLAY, soft to firm, some medium grained sands ight grey mottles, firm to soft, moist 2 nor red/orange mottles, firm, igh plasticity, low moisture 4 ht brown mottles, moist, soft 6 ht brown mottles, low o soft, high plasticity 6 ht brown/orange mottles, brate to low plasticity 10 CLAY with light grey mottles, moisture content, firm, high 12 CLAY with light grey mottles, moisture content, firm, high 14 CLAY, firm to soft, high 20 ft to firm, moderate to low cohesion becoming friable, external content, poor cohesion asticity 24 ht brow to moderate plasticity 24							3% bentonite / cement mix a </td
	iter le	₽ <u> </u>	GROUNDWATER SYM ic)	OLS g drilling) → ► = Outflow / In	flow	E Bulk	Sample •	FIELD DATA = Disturbed S	SYMBOLS ample	S =	Undisturbed Tube Sample

	SK	M					BOR	EHOL	E No. A5a		
Projec Job No	et: Monit o: BW0	oring Program 7575	Client: Barwon Water Completion Date: 26/6/14 Bore dia: 190 mm	4 - 27/6/14	Driller: Go Dri Rig: Mud rota	ll - Allen ıry	Northings: Eastings: RLNS:	5740043. 215314.9 141.2WC	I3.4mN I.9mE Logged: Yes /GS 84 - MZ 54		
FIELD DA	ATA	SOIL D	ESCRIPTION		GA	mma log proi	FILE		COMMENTS		
sample type elevation (m)	depth (m) graphic log	soil type, unified cla particle characte	ssification, colour, structure, istics, minor components	15	count p 30 45	60	s) 75 90	- 105	drilling method, well construction, water and additional observations		
90- 90- 88- 88- 88- 88- 88- 88- 88- 88- 88- 88- 88- 88- 88- 88- 88- 81- 82- 81- 82- 78- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 77- 76- 71- 72- 71- 72- 71- 72- 71- 72- 71- 72- 71- 72- 71- 72- 73- 74- 74- 72- </td <td></td> <td>Medium grey to light of moderate moisture co becoming friable Medium grey to light of moderate moisture co becoming friable</td> <td>rey silty CLAY, soft to firm, nent, low to moderate plasticity frey silty CLAY, very soft, ntent, low to moderate plasticity rey silty CLAY, soft to firm, ntent, low to moderate plasticity 60 60 60 60 62 78 64 64 64 64 70 72 74 74 74 74 74 74 74 74 74 74</td> <td></td> <td></td> <td></td> <td></td> <td>SYMBOLS</td> <td></td>		Medium grey to light of moderate moisture co becoming friable Medium grey to light of moderate moisture co becoming friable	rey silty CLAY, soft to firm, nent, low to moderate plasticity frey silty CLAY, very soft, ntent, low to moderate plasticity rey silty CLAY, soft to firm, ntent, low to moderate plasticity 60 60 60 60 62 78 64 64 64 64 70 72 74 74 74 74 74 74 74 74 74 74					SYMBOLS			
💻 = Wat	er level (sta	GROUNDWATER SYN atic)	ISULS ng drilling) ◀ ▶ = Outflow / In	flow	=	Bulk Sample	 FIELD DATA = Disturbed S 	SYMBOLS ample	= Undisturbed Tube Sample		

		S	K	M						BOR	EHO	LE	No. A5b
	Proje Job N	ect: N No: E	Monito 3W075	ring Program 575	Client: Barwon Water Completion Date: 28/5/1 Bore dia: 229 mm	4 - 29/5/14	Driller Rig:	: Matrix Hollow augo	er	Northings Eastings: RLNS:	574004 215315 141.2V	46.2m 5.3mI VGS	nN E Logged: Yes 84 - MZ 54
FIE	ELD D)ATA		SOIL DE	SCRIPTION			GAMN	ia log prof	FILE			COMMENTS
sample type	elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	30	count per	second (cps 60 7	s) 75 90	105	ground water	drilling method, well construction, water and additional observations
	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c} 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$		Light brown to yellow C cohesive	LAY, firm, dry, friable, LAY, fri								 Bentonite percentation in the per
Ţ	- = Wa	ater lev	vel (statio	GROUNDWATER SYM c) $\overline{\underline{\nabla}}$ = Water level (durin	3OLS g drilling) ─ → = Outflow / I	nflow		= Bul	k Sample	FIELD DATA = Disturbed S	SYMBOL	.S =	Undisturbed Tube Sample

	5	SK									BOR	EHC	DLE	ENO. A6a
Proj Job	ect: No	: Mo : BV	onitor V075	ring Program 575	Client: Barwon Water Completion Date: 8/7/14 Bore dia: 190 mm	- 9/7/14	Driller: Go Drill - Allen Northings: 5737364.4mN Rig: Mud rotary Eastings: 208616.2mE Logge RLNS: 171.5WGS 84 - MZ 5							nN E Logged: Yes 84 - MZ 54
FIELD	DA	ΓA		SOIL DE	SCRIPTION		GAMMA LOG PROFILE CON							COMMENTS
sample type elevation (m)	donth (m)	uepui (iii)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	30	count per 45	second 60	(cps) 75	90	105	ground water	drilling method, well construction, water and additional observations
171	-		~	Medium orange brown moist, firm, moderate p	silty CLAY, light grey mottles, a lasticity.		-						Ţ	3% bentonite /
170 <u></u> 169		2		Light grey CLAY with o moderate to high plasti	ange/brown mottles, city, minor silt.		V_		N ^V					
168 <u></u> 167_		┙┙┙		Light grey silty CLAY w moist, soft to firm, mod	th orange/brown mottles, erate to low plasticity.			M M M						
16 <u>6</u> 165 164				Yellow brown silty CLA to moderate plasticity, t	6 Y with light grey mottles, low irm to soft, moist.				<u>}</u>					
163 <u></u>		8 		Medium grey silty CLA moderate plasticity, firm	8 with light grey mottles, low to to soft, moist.			MN Y	- - - - - - - - - - - - - - - - - - -	•				
162 161 160	- 1 - 1	┥┙┙┙┙		Yellow brown silty CLA to moderate plasticity, t	Y with light grey mottles, low irm to soft, moist. 10-			ALM MIN		-				
15 <u>9</u> 158 <u></u>	- 1: 			Dark chocolate brown s mottles, low to modera	12- ilty CLAY with yellow/brown e plasticity, firm to soft, moist.				M M	M M				
157_ 156_ 155 <u>-</u>	- - - - - - 1	125725252555555555555555555555555555555	۲۶ کار کر	Dark yellow brown clay medium sands, soft, lo	ey SIL I, trace fine and v plasticity.		N. N		V V V		-			
15 <u>4</u> 153 <u></u>	- - - - - 1		[2] [] [] [] [] [] [] [] [] [] [] [] [] []	Medium chocolate brow plasticity, soft to firm, 5 sands, trace gravels up	n silty CLAY, moderate to low 10% rounded coarse (quartz) to 4 mm. 18			. AAA		-				
152	2			Medium chocolate brow plasticity, soft to firm.	n silty CLAY, moderate to low 20- 20 silty CLAY, moderate to low			N N		.				
15 <u>1</u> 150_	, ,			plasticity, soft to firm, 5 sands, trace gravels up	10% rounded coarse (quartz) to 4 mm.			M. MMM. A	Λ_{2}					
149 148 148	- 2				22					/				
	-	<u> </u>					5 5 5		>					
▼ = V	GROUNDWATER SYMBOLS FIELD DATA SYMBOLS													

Э	KM				BOREHOLE No. A6a					
Project: Job No:	Monitoring Program BW07575	Client: Barwon Water Completion Date: 8/7/14 Bore dia: 190 mm	Dril - 9/7/14 Rig	er: Go Drill - Allen Mud rotary	Northings: Eastings: RLNS:	5737364 208616. 171.5W	4.4m 2mE GS 8	IN E Logged: Yes 84 - MZ 54		
IELD DATA	a soii	DESCRIPTION		GAMMA LOG PROFILE COMM						
attripte type elevation (m) lepth (m)	soil type, unified o o particle charac	classification, colour, structure, teristics, minor components	15 3	count per second (cps) 0 45 60 7	5 90	105	round water	drilling method, we construction, wate and additional observations		
$\begin{tabular}{ c c c c c c } \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	Bot Medium grey to data low to moderate plat (continued) Medium grey to data low to moderate plat (continued)<	k brown clayey SILT, soft to firm, isticity, moist, moderate cohesion. 52 54 54 56 60 62 62 64 64 64 70 70 72		A ANN MAN MAN MAN MAN MAN MAN MAN MAN MA			Bu			

Preset: Monitoring Pregram Add Not: BW07576 Bit Barvon Witer Completion Date: 272141 - 272574 Rig: Solid auge: Entry: 278778.6m1 Entry: 27	S	KM					BOR	EHO	LE	No. A6b		
FIELD DATA SOIL DESCRIPTION CAMMA LOC PROFILE COMMENTS 88 gilling gilling <th>Project Job No</th> <th>: Monitoring Program : BW07575</th> <th>Client: Barwon Water Completion Date: 27/5/1 Bore dia: 114 mm</th> <th>4 - 27/5/14</th> <th>Driller: Matri Rig: Solid a</th> <th>x uger</th> <th>Northings Eastings: RLNS:</th> <th>: 573734 208778 167.9W</th> <th>6.4m 8.8mf /GS</th> <th>N E Logged: Yes 84 - MZ 54</th>	Project Job No	: Monitoring Program : BW07575	Client: Barwon Water Completion Date: 27/5/1 Bore dia: 114 mm	4 - 27/5/14	Driller: Matri Rig: Solid a	x uger	Northings Eastings: RLNS:	: 573734 208778 167.9W	6.4m 8.8mf /GS	N E Logged: Yes 84 - MZ 54		
No. Output of the second (cps) Output of the second (FIELD DA	ТА	SOIL DESCRIPTION		GAMMA LOG PROFILE					COMMENTS		
197 - CLAY, yeakew brown, day, finishe, fim 2 Ship (CLAY, rozhown, dy, finishe, fim 3 3 3 3 3 3 3 3	sample type elevation (m)	(ii) o soil type, un o particle c	ified classification, colour, structure, haracteristics, minor components	15	coun 30 4	t per second (cps 5 60 7) 75 90	105	ground water	drilling method, well construction, water and additional observations		
Image: symbol	$167 \\ 166 \\ 165 \\ 164 \\ 163 \\ 162 \\ 161 \\ 162 \\ 161 \\ 162 \\ 162 \\ 161 \\ 162 \\ 162 \\ 161 \\ 159 \\ 158 \\ 1 \\ 157 \\ 156 \\ 1 \\ 155 \\ 156 \\ 1 \\ 155 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 156 \\ 1 \\ 157 \\ 166 \\ 1 \\ 148 \\ 2 \\ 147 \\ 148 \\ 2 \\ 147 \\ 148 \\ 2 \\ 147 \\ 148 \\ 2 \\ 147 \\ 148 \\ 2 \\ 143 \\ $	CLAY, yellow Silty CLAY, r	v brown, low moisture content, firm ed-brown, dry, friable, firm CLAY with grey brown mottles, moist, erent, moderate plasticity orange CLAY, very moist, soft, high ight brown to yellow brown, wet, ed ight brown to yellow brown, ed ight					SYMBOL:		 3% bentonite / cement mix Bentonite Pel-Plug pellets 5/2 gravel 0.8 mm aperture screen 		

	S	K	M				BOREHO	LE	No. RB1		
Pro Job	oject: Monitoring Program Client: Barwon Water b No: BW07575 Completion Date: 17/6/1 Bore dia: 200 mm					Driller: Go Drill - Allen Rig: Mud rotary	Northings: 57403 Eastings: 20852 RLNS: 232.4\	47.4r 4.6m VGS	nN E Logged: Yes 84 - MZ 54		
FIELD	DA ⁻	ΓA	SOIL D	ESCRIPTION		gamma log pro	DFILE	COMMENTS			
sample type	donth (m)	graphic log	soil type, unified cla particle character	ssification, colour, structure, ristics, minor components	15	count per second (cr 30 45 60	75 90 105	ground water	drilling method, well construction, water and additional observations		
232	2-		Medium brown to orar sands	nge silty CLAY, some medium			-		3% bentonite / cement mix		
23			Orange CLAY with rec trace medium to fine s	I-brown and dark grey mottles, - sands							
230	2	2	Orange CLAY with rec fine sands	l-brown and grey mottles, trace							
229	2										
228		4	Light grey and pink-re mottles, some very fin sands and gravels	d CLAY with orange and cream e to fine sands, trace coarse			-				
227	7		Orange CLAY with rec fine sands, trace angu	I-brown and grey mottles, trace lar black and white gravels ~2	9 						
226	5-		Dark red to brown clay some fine sands	vey GRAVEL 1-5 mm, angular,				-			
225	5		Cemented GRAVEL, angular	500mm, dark red to brown,		_					
224	4-	8 - 000 - 0000 - 0000 - 0000	Dark red to brown clay some fine sands Cemented GRAVEL, !	/ey GRAVEL 1-5 mm, angular, 8- 7- 500mm, dark red to brown,							
223	3-		\angular Dark red to brown clay coarse sands	/ey GRAVEL < 2 mm, some							
222	- 2- -		Orange brown and bla and fine gravels, grave and angular to rounde 9-13m and from 1-12 light orange-cream fro	ck slightly clayey coarse SAND els are white (potentially silicic) d, gravels are 1-3mm from mm from 13-16m, clays are m 9-13m, orange-red from							
22 ⁻			13-14m and grey-crea	m from 14-16m.							
220	<u>-</u> '			۱ <u>د</u>	-						
219	2	-1.: 1				2					
218	1 3-	4 <u>-</u>		14-	_						
217		_]		-			-				
216	1 5		Sandy, slightly clayey (white), orange, orang	GRAVEL, 0.5-8 mm, quartz e-brown, grey, clay is light	_						
215	5		grey-cream, sand is c Very sandy, gravelly C medium to coarse, gra	barse. LAY, light grey-cream, sand is							
214	1 1	8 <u>1</u> 8 1	orange, orange-brown	, grey, clay is light grey-cream ₁₈ -							
21:	3-			-		M					
212	2			20-	-						
21			Clavey and slightly gra	avelly fine to medium grained			-				
	2	2 2 1 − 1 − 1 − 1 − 1 − 1 − 1	SAND, light grey-brow with some mica, clays minor orange and red	n, sands are quartz dominant s are light grey-brown, some mottles below 23m, graveles							
			are generally <3mm, i	ncreasing to 6mm at 24m.							
209	2	4 4 		24-	-						
	-	1	1		5 5 5						
⊻ = 1	<u>W</u> ate	<u>level (</u> sta	GROUNDWATER SYN tic) <u> </u>	1BOLS ng drilling) ⊨ Outflow / Ir	nflow	= Bulk Sample	 FIELD DATA SYMBOI = Disturbed Sample 	_S =	Undisturbed Tube Sample		
							· · · ·				

S	K	M						В	ORE	EHO	LE	No. RB1
Project: Job No:	Monito BW07	ring Program 575	Client: Barwon Water Completion Date: 17/6/14 Bore dia: 200 mm	- 23/6/14	Driller: (Rig: Mu	Go Drill - A ud rotary	llen	Nc Ea RL	orthings: astings: _NS:	574034 208524 232.4W	17.4m 1.6m1 /GS	Net 2 of 4 NE Logged: Yes 84 - MZ 54
FIELD DAT	A	SOIL DE	SCRIPTION	GAMMA LOG PROFILE								COMMENTS
sample type elevation (m) depth (m)	graphic log	soil type, unified clas particle characteris	sification, colour, structure, stics, minor components	15	30	count per s	econd (cr 60	ps) 75	90	105 	ground water	drilling method, well construction, water and additional observations
207 205 205 204 203 202 201 201 201 199 197 197 197 197 197 197 19		Clayey SAND, light grey-brown with some mica, clays a minor orange and red m are generally <3mm, ine (continued) Clayey SAND, light grey medium, micaceous, m is dominantly quartz, cla minor orange and red-b Very clayey SAND, light light grey, sand is very f gravel < 2 mm Clayey SAND, light grey medium, micaceous, m is dominantly quartz, cla minor orange and red-b Very clayey SAND, light light grey, sand is very f gravel < 2 mm Mid-grey-brown sandy s Very sandy silty CLAY, to very fine. Light grey-brown sandy s Dark chocolate brown/b is fine to coarse <1 mm	Proven, sand is fine to incor gravels up to 6 mm, sand are ight grey-brown, some interest of the select 23m, graveles is greasing to 6 mm at 24m. Proven, sand is fine to incor gravels up to 6 mm, sand are ight-grey-brown with mottling ine to fine, and very minor					FIE		SYMBOL	S	
🛓 = Water	<u>level (sta</u> ti	ic) $\overline{\underline{\nabla}}$ = Water level (during	g drilling) <u> </u>	low		= Bulk	Sample	• = Di:	sturbed S	ample	=	Undisturbed Tube Sample

Proj	ject:								Shoot 2 of 4	
JOD	No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 17/6/14 Bore dia: 200 mm	Driller: G I - 23/6/14 Rig: Mu	Go Drill - Allen d rotary	Northings: 57403 Eastings: 20852 RLNS: 232.4	47.4r 4.6m WGS	nN E Logged: Yes 84 - MZ 54	
FIELD	DAT	A	Soil de	SCRIPTION		Gamma log prof	COMMENTS			
sample type elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	c 15 30	ount per second (cps 45 60 7) 75 90 105	ground water	drilling method, well construction, water and additional observations	
182 181 180 179 178 179 171 175 174 175 171 172 171 172 171 172 171 162 165 164 165 161 162 161 162 161 162 161 162 163 164 165 161 162 161 162 163 164 165 161 162 158			Dark chocolate brown/l is up to 3 mm becomin Dark chocolate brown/l to 3 mm becoming gravel Mid-brown silty/clayey gravel 1-4 mm Gravelly, clayey SAND, orange, black and grey coarse, gravel < 3 mm Light brown clayey slig to coarse, gravel < 3 m Light brown slightly cla 1-2 mm Mid-grey, clayey, gravel coarse, gravels < 3 m Mid-grey clayey, gravel coarse, gravels < 3 m Mid-grey clayey, gravel coarse, gravels < 3 m	plack, silty/clayey SAND, sand g gravelly plack, sandy CLAY, sand is up velly 52 GRAVEL, some coarse sand, 54 54 56 mid grey-brown clay, quartz sand and gravel sand med to 58 mitly gravelly SAND, sand fine m 60 vey SAND, no gravel 62 vey coarse SAND, < 2 mm, 64 rGRAVEL, angular to minant, 1-3 m 66 y SAND, sand is fine to 11 y SAND, sand is fine to 12 y SAND, sand is fine to 13 y SAND, sand is fine to 14 y SAND, sand is fine to 14 y SAND, sand is fine to 15 y SAND, sand is fine to 16 y SAND, sand is fine to 17 y SAND, sand is fine to						
T = V	Vater	level (stat	GROUNDWATER SYM	30LS g drilling) → ► = Outflow / In	low	= Bulk Sample	FIELD DATA SYMBO = Disturbed Sample	LS =	Undisturbed Tube Sample	

	S	K	M					B	OREH	OLE	N	o. TB01a
Proje Job	ect: No:	Monito BW07	oring Program ′575	Client: Barwon Water Completion Date: 12/5/1- Bore dia: 229 mm	Driller: Go Drill - Simon Northings: 5742075.1mN 4 - 14/5/14 Rig: Hollow auger Eastings: 212070.5mE Logge RLNS: 144.0WGS 84 - MZ 54							
FIELDI	DAT	A	SOIL D	DESCRIPTION		Gamma LC	COMMENTS					
sample type elevation (m)	depth (m)	graphic log	soil type, unified cla particle character	ssification, colour, structure, ristics, minor components	15	co 30	unt per secc 45 60	ond (cps)	90	105	ground water	drilling method, well construction, water and additional observations
143			Silty CLAY, red-brown firm, some fine sands	to grey-brown, slightly moist,				 		- - - - - - - - -	Ā	3% bentonite / cement mix
142	2		Clayey SILT, yellow-g moist, firm	rey, some minor fine sands, 2		MM N	M M				V	AMC bentonite
			Silty CLAY, yellow-bro moderate to high plas	own, moist, soft to firm, ticity, some fine sands								chips
140	4		Slightly silty CLAY, lig 5mm in diameter (silic moderately to slightly	ht grey, some pebbles 2 to 4- ic), some medium grey sands, moist, high plasticity						-		Sibelco 5/2 gravel
138 <u>-</u>	6		Sandy CLAY, grey-yel plasticity	low, very moist, soft, low 6	×	M. A. M.	-					
137			No return, suspected t SILT	to be unconsolidated clayey						-		
136	8			8- 		-			~	- - - - - -		
135		222222 222222	Clayey SILT, yellow-bi wet, extremely low co	rown, some medium sands, nsistency, unconsolidated						-		0.8 mm aperture screen
134 <u>-</u>	10			- 10- -			M			- - - - - - - -		
133			CLAY with some med high plasticity,	lium sands, red-brown, moist, 		-				- - - - -		
132	12		Clayey SILT, dark brow unconsolidated	wn, some medium sands, wet, 12 12						5 5 5 5 5 5		Fall in
131		-	Ligneous CLAY (peat plasticity, some mediu friable planar texture -	?), black-brown, moderate um sand, some moisture, some						-		
130	14	-		14-						-		
129												
128-	16			- 16 <u>-</u> -						-		
127		-		-						-		
126	18	-		18 <u>-</u> -						5 5 5 5 5 5 5 5		
125										- - - - - - -		
124	20	-		20-						- - - - - -		
123	-											
122	22			22-					• • • •			
120	24								-			
119												
	<u>.</u>		GROUNDWATER SYN	/BOLS	· · · · · ·				FIELD DATA	SYMBOL	S	
<u> </u>	ater	level (sta	tic) ≚ = Water level (duri	ing drilling) ◀ ▶ = Outflow / In	flow		= Bulk San	nple 🔸	= Disturbed S	ample	=	Undisturbed Tube Sample

Project Marketing Program Client Barvon Wate: Composite Data Differ: Ea-Diff - Allin Sectors Nontring: 574075-INL Earling: 22070-578 Location II HED DATA SOL DESCRIPTION CAMMA LOC PROFILE COMMENTS HED DATA SOL DESCRIPTION CAMMA LOC PROFILE	SKM						B	OREH	OLE	: N	o. TB01b		
FELD DATA SOL DESCRIPTION CAMMA LOG PROFILE COMMENTS Status and logs, united desailation, colour, structure, particle disastination, colour, structure, particle disastination, colour, structure, particle disastination, colour, structure, and editional disastinate disastination, colour,	Project: Monitoring Program Job No: BW07575	Client: Barwon Water Completion Date: 26/5/1 Bore dia: 143mm	5 - 28/5/15	Driller: Rig: N	Go Drill lud rotary	- Allen /		Northings Eastings: RLNS:	: 574207 212070 144.0V	75.1m 0.5ml VGS	nN E Logged: Yes 84 - MZ 54		
and output exit per unified dealing output, charter duration, charter dur	FIELD DATA S	SOIL DESCRIPTION			GAM	ma log f	PROFIL	E			COMMENTS		
140 141 <td>soil type, unifie elevation (m) (m) debth (m) debth (m) debth (m)</td> <td colspan="4">soil type, unified classification, colour, structure, particle characteristics, minor components</td> <td>er second 60</td> <td>(cps) 75</td> <td>90</td> <td>105</td> <td>ground water</td> <td>drilling method, well construction, water and additional observations</td>	soil type, unifie elevation (m) (m) debth (m) debth (m) debth (m)	soil type, unified classification, colour, structure, particle characteristics, minor components				er second 60	(cps) 75	90	105	ground water	drilling method, well construction, water and additional observations		
$I_{134} = 10$ I_{1	b b c c c Dark chocolate fine, poor cohes 143 1 A Fine, poor cohes plasticity, some gravels are silic 142 2 Dark yellow/brow to low plasticity, some siliceous gravels are silic Dark yellow/brow to low plasticity, some siliceous gravels 141 3 Medium grey he some siliceous large grains are sub-angular, soi 140 4 S Sub-angular, soi 137 7 Dark grey/brown moderate plasti to 4 mm. 136 8 S S 136 8 S S 136 9 S S	brown slightly sandy SILT, sands are sion ravelly light CLAY, cohesive, high e medium chocolate brown mottles, seous and up to 7 mm. wn sandy CLAY, cohesive, moderate , sands are fine grained, some is up to 7 mm. eavy sandy CLAY, sands are coarse, gravels up to 15 mm, poorly sorted, e sub-rounded and smaller grains are me yellow brown mottles. 4 4 5 5 6 6 7 7 n gravelly medium CLAY, cohesive, icity, yellow brown mottles, gravels up								5	3% bentonite / cement mix		
GROUNDWATER SYMBOLS FIELD DATA SYMBOLS = Water level (static) ↓ = Water level (during drilling)		10											
	GROUNDWATE ⊈ = Water level (static) ⊈ = Water level	R SYMBOLS <i>r</i> el (during drilling) → 	nflow		= B	ulk Sample	٠	FIELD DATA = Disturbed S	s SYMBOL Sample	.S	Undisturbed Tube Sample		
	5	K	Μ						B	OREH	OLE	N	o. TB01b
--	-----------------	--	---	---	-------------	----------------------	-------------------------	------------	-------------	----------------------------------	----------------------------	-----------------------	--
Pro Job	ject: No:	: Monit : BW07	oring Program 7575	Client: Barwon Water Completion Date: 26/5/15 Bore dia: 143 mm	5 - 28/5/15	Driller: (Rig: M	Go Drill - ud rotary	Allen		Northings: Eastings: RLNS:	574207 212070 144.0V	75.1n).5ml VGS	nN E Logged: Yes 84 - MZ 54
FIELD	DA ⁻	TA	SOIL	DESCRIPTION			GAM	Ma log f	PROFIL	E			COMMENTS
sample type elevation (m)	douth (m)	deput (m) graphic log	soil type, unified cl particle characte	assification, colour, structure, ristics, minor components	15	30	count per 45	second	(cps) 75	90	105	ground water	drilling method, well construction, water and additional observations
iiii iiiiiii 132 132 131 132 132 131 132 132 132 132 132 132 132 132 132 132 132 132 132 132 124 124 125 124 124 124 124 124		$\frac{5}{2} - \frac{1}{2} - \frac{1}$	 Dark grey/brown gra moderate plasticity, y to 4 mm. (continued) Dark grey/brown mei- plasticity, yellow brown gravels up to 4 mm, clays. Medium brown/grey moderate to low plase up to 5 mm. Orange/brown heavy cohesive, some trace 	relly medium CLAY, cohesive, rellow brown mottles, gravels up 11 fium CLAY, cohesive, moderate on mottles. 12 coarse SAND, some minor Some minor dark brown silts and 13 rocarse SAND, some minor Some minor dark brown silts and 14 ight to medium CLAY, cohesive, ticity, some sub-rounded gravels 15 CLAY, very firm, high plasticity, rounded gravels up to 5 mm. 17 17 17 17 19									Fall in with bentonite AMC bentonite chips Sibelco 5/2 gravel 0.8 mm aperture screen
			GROUNDWATER SY	MBOLS	a				-	FIELD DATA	SYMBOL	S	
<u>=</u> = \	Wate	r level (sta	atic) ≚ = Water level (du	ring drilling) — 🕨 = Outflow / In	flow		= Bu	lik Sample	•	= Disturbed S	ample	=	Undisturbed Tube Sample

	S	K						B	OREH	OLE	E N	o. TB01c	
Proj Job	ect: No:	Monito BW07	oring Program 2575	Client: Barwon Water Completion Date: 26/5/1: Bore dia: 143 mm	5 - 28/5/15	Driller: Rig: M	Go Drill	- Allen /		Northings Eastings: RLNS:	57420 212070 144.0V	75.1n).5ml VGS	nN E Logged: Yes 84 - MZ 54
FIELD	DAT	A	SOIL I	DESCRIPTION			GAM	ma log f	PROFIL	E			COMMENTS
ample type levation (m)	lepth (m)	raphic log	soil type, unified cla particle characte	assification, colour, structure, ristics, minor components	15	30	count pe 45	er second 60	(cps) 75	90	105	round water	drilling method, well construction, water and additional observations
<u>-</u> 143 <u>-</u> 142 <u>-</u> 141 <u>-</u> 140 <u>-</u> 139 <u>-</u> 138 <u>-</u> 138 <u>-</u> 137 <u>-</u> 136 <u>-</u>			Dark chocolate brown fine, poor cohesion Yellow brown gravelly plasticity, some medi gravels are siliceous Dark yellow/brown sa to low plasticity, sand siliceous gravels up t Medium grey heavy s some siliceous grave large grains are sub- sub-angular, some ye Dark grey/brown grav moderate plasticity, y to 4 mm.	e slightly sandy SILT, sands are									3% bentonite / cement mix
135_ 	- - - - - - - - - - - - - - - - - - -			9 									AMC bentonite chips
	0		GROUNDWATER SY	MBOLS			i.			FIELD DATA	SYMBOL	S	
_ = V	/ater	level (sta	tic) 💆 = Water level (du	ing drilling) — 🕨 = Outflow / In	flow		= B	ulk Sample	٠	= Disturbed S	ample	=	Undisturbed Tube Sample

		S	K	M						B	OREH	OLE	ΞN	o. TB01c
	Proje Job I	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 26/5/15 Bore dia: 143 mm	5 - 28/5/15	Driller: Rig: M	Go Drill · lud rotary	- Allen		Northings Eastings: RLNS:	: 574207 212070 144.0V	75.1n 0.5ml VGS	nN E Logged: Yes 84 - MZ 54
FI	ELD D	DATA	٩	SOIL I	DESCRIPTION			GAM	MA LOG I	PROFIL	E			COMMENTS
sample tvpe	elevation (m)	depth (m)	graphic log	soil type, unified cla particle characte	assification, colour, structure, ristics, minor components	15	30	count pe	r second 60	(cps) 75	90	105	ground water	drilling method, well construction, water and additional observations
	133 	- 11 - 12 - 13 - 13 - 14 - 15 - 16 - - 16 - - 17 - - 18 - - - 19 - - - - - - - - - - - - - - -		Dark grey/brown mec plasticity, yellow brow Dark grey/brown mec plasticity, yellow brow Dark grey/brown very gravels up to 4 mm, S clays. Medium brown/grey I moderate to low plas up to 5 mm. Orange/brown heavy cohesive, some trace	ellow brown mottles, gravels up ellow brown mottles, gravels up 11 ium CLAY, cohesive, moderate in mottles. 12 13 coarse SAND, some minor Some minor dark brown silts and 14 ght to medium CLAY, cohesive, icity, some sub-rounded gravels 15 15 16 CLAY, very firm, high plasticity, rounded gravels up to 5 mm. 18 18 18 19 gravelly CLAY, very firm, high punded gravels up to 5 mm.									Fall in with bentonite
	W	ater I	level (stat	GROUNDWATER SYI	VBOLS ing drilling)	low		= BI	ulk Sample	•	FIELD DATA	symbol Sample	_S _=	Undisturbed Tube Sample

Project: Maintening Program Descrit Barunst Wate: Descrit Barunst Wate: <thdescrit barunst="" th="" wate:<=""> Descrit Baru</thdescrit>	SKM						B	OREH	IOLE	ΕN	o. TB01c
HI DDAN SUL D (SCRPTION CAMAA I CG PADILIF COMMA ISS 10 1	Project: Monitoring Program Job No: BW07575	Client: Barwon Water Completion Date: 26/5/15 Bore dia: 143 mm	- 28/5/15	Driller: Rig: M	Go Drill · lud rotary	- Allen		Northings Eastings: RLNS:	: 57420 21207 144.0V	75.1n 0.5m VGS	nN E Logged: Yes 84 - MZ 54
Bit State Count per second (cp.) Open	FIELD DATA S	SOIL DESCRIPTION			GAM	ma log f	PROFIL	.E			COMMENTS
18 22 18 24 18 24 18 24 19 25 19 24 19 25 19 24 19 25 19 25 19 24 19 25 19 24 19 25 21 24 19 25 24 24 19 25 24 24 19 25 24 24 19 25 24 24 19 25 24 24 19 25 24 24 25 25 26 24 27 24 28 24 29 24 20 24 21 24 22 24 23 24 24 24 25 24 26 24 27 24 28 24 29 24 29 24 29	sample type elevation (m) depth (m) barticle cha graphic log graphic log	ed classification, colour, structure, aracteristics, minor components	15	30	count pe	r second 60	(cps) 75	90	105	ground water	drilling method, well construction, water and additional observations
GROUNDWATER SYMBOLS FIELD DATA SYMBOLS = Water level (static) = Water level (during drilling) → = Outflow / Inflow = Bulk Sample = Disturbed Sample = Undisturbed Tube Sample	123 21 Orange/brown I plasticity, coher (continued) 123 21 Image: continued (continued) 124 Image: continued (continued) 125 22 Image: continued (continued) 126 Image: continued (continued) 127 22 Image: continued (continued) 128 Image: continued (continued) 129 22 Image: continued (continued) 120 24 Image: continued (continued) 120 24 Image: continued (continued) 119 25 Image: continue (continued) 119 25 Image: continue (continued) 119 25 Image: continue (continue (conticontinue (continue (continue (continue (continue (continue (contin	heavy gravelly CLAY, very firm, high sive, rounded gravels up to 5 mm. 21 22 22 23 rown heavy CLAY, very firm, high sive, some rounded to sub-rounded n, some dark grey/black ligneous gight, low plasticity). 24 25 25 26 medium to coarse grained SAND, se, some trace clay. 27 30									AMC bentonite chips
	GROUNDWATE ⊈ = Water level (static)	R SYMBOLS /el (during drilling) ► = Outflow / Infl		= Bi	ulk Sample	•	FIELD DATA	A SYMBOL Sample	S =	Undisturbed Tube Sample	

		5	K							B	OREH	OLE	E N	o. TB01c
P Ji	roje ob N	ct: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 26/5/1: Bore dia: 143 mm	5 - 28/5/15	Driller Rig:	: Go Dril Mud rota	l - Allen ry		Northings Eastings: RLNS:	: 57420 21207(144.0V	75.1n).5ml VGS	nN E Logged: Yes 84 - MZ 54
FIEL	LD D	ATA		SOIL	DESCRIPTION			GA	mma log	PROFIL	.E			COMMENTS
sample type	elevation (m)	depth (m)	graphic log	soil type, unified cl particle characte	assification, colour, structure, ristics, minor components	15	30	count p	er seconc 60	1 (cps) 75	90	105	ground water	drilling method, well construction, water and additional observations
				Medium brown medi well sorted, loose, so	um to coarse grained SAND, ime trace clay. (continued) 31 32 32 33 34 34 34 34 34 34 34 34 34 34 34 34								6	Sibelco 5/2 gravel
	= Wa	ater le	evel (stat	GROUNDWATER SY ic)	MBOLS ring drilling)	flow		=	Bulk Sample	e •	FIELD DATA	SYMBOL	.S =	Undisturbed Tube Sample

0	KM			BOREHC	DLE N	o. TB02b Sheet 1 of 1
Project: Job No:	Monitoring Progra BW07575	m Client: Barwon Water Completion Date: 19/8/1 Bore dia: 114 mm	Driller: Matrix 4 - 19/8/14 Rig: Solid auger	Northings: 5 Eastings: 7 RLNS: V	743805.0n 34665.0m VGS 84 - N	nN E Logged: Yes AZ 54
IELD DATA	4	SOIL DESCRIPTION	GAMMA LOG PR	ROFILE		COMMENTS
sample type elevation (m) depth (m)	ວ, soil type, o particle	unified classification, colour, structure, e characteristics, minor components	count per second (c	75 90	- 501 ground water	drilling method, w construction, wat and additional observations
2 4 4 - - - - - - - - - - - - -	Coarse to 1-2 mm an mica, moi Dark brow, unconsolis fine graine Coarse to 1-2 mm an mica, moi Dark oran SANDS, v minor sitts lithic frag and silicer	medium orange brown SAND, some minor ngular siliceous lithic fragments, some st, poor cohesion, sands are medium to ad and sub rounded 2 ge to dark brown medium to coarse grained e and clays, some red/brown sub angular nents (perhaps scoria), sands up to 2 mm bus, some minor mica 8 10 10 11 12 12 14 14 14 16 18 18 20				3% bentonite / cement mix Bentonite chip 5/2 gravel 0.4 mm apertu screen

ſ		S	K	M						B	OREH	IOLE	E N	O. TB02c
	Proje Job I	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 29/5/1 Bore dia: 229 mm	5 - 29/5/15	Driller: Rig: ⊢	Go Drill Iollow aug	- Allen ger		Northings Eastings: RLNS:	: 574399 734639 WGS 8	93.0n 9.0ml 34 - N	nN E Logged: Yes MZ 54
FII	ELD [DATA	N N	SOIL D	ESCRIPTION			GAM	ma log f	PROFIL	E			COMMENTS
sample type	elevation (m)	depth (m)	graphic log	soil type, unified clas particle character	ssification, colour, structure, istics, minor components	15	30	count pe	r second 60	(cps) 75	90	105	ground water	drilling method, well construction, water and additional observations
Γ			: : : :	Silty sand: Dark brown	, fine grained, loose, dry,									Cement
		· · · · · · · · · · · · · · · · · · ·		Sand: Light grey to yel grained, well sorted,	low/brown, medium to fine									Bentonite chips
		1		Silty Sand: Light grey,	fine grained, soft to firm. 1 - - -									5/2 gravel
		2		Sand: Light brown to y loose.	ellow/brown, fine grained, 2 - - - - - - - - - - - - - - - - - -									0.8 mm aperture screen
		3			3									
		4		fine grained.	4 									ra ra
		5			5_ - - - -									
		6			6									
		- - - -	-		-									
			-		7									
		8			8									
		9			<u>9</u>									
		10			10			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						
	- = W	ater le	evel (stat	GROUNDWATER SYM ic)	BOLS ng drilling) —	nflow		= Bi	ulk Sample	•	FIELD DAT	A SYMBOL Sample	.S =	Undisturbed Tube Sample

	S	K	M						BORE	HOL	E	No. TB03
Proje Job N	ct: lo:	Monito BW07	ring Program 575	Client: Barwon Water Completion Date: 28/5/1 Bore dia: 190mm	4 - 30/5/14	Driller: Rig: N	Go Drill - A lud rotary	llen	Northings Eastings: RLNS:	: 574169 208133 225.5V	91.2n 3.9ml VGS	nN E Logged: Yes 84 - MZ 54
FIELD D	ATA		SOIL DE	SCRIPTION			GAMMA	LOG PROF	ILE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	30	count per s	econd (cps) 60 7) 5 90	105	ground water	drilling method, well construction, water and additional observations
225 224 223	-		Orange brown CLAY, fi Silty CLAY, red-orange mottles_trace fine sand	rm, some organic matter poor cohesion, orange		1,1						3% bentonite / cement mix
222 222 221 220 219	5		Silty CLAY, light brown mottles, trace fine sand to soft with moderate p	to light orange, white-cream s, chunks are moist and firm asticity 5_								
218 217 216 215 214	- - 10			- 								
213 212	-		CLAY, light grey, moist high plasticity	more coherent, moderate to		_				-		
211 210 209 208	15		CLAY, light brown with firm with high plasticity sands	orange mottles, chunks are 15 very moist, some medium								
207_ 206_ 205_ 204_	20			20		_				-		
203 _ 202 _ 201 _ 200 _ 199 _ 198	- 25_ -		Light brown medium to approximately 30% ligh	coarse SANDS, poorly sorted, t brown silty clay 25_ -	v V							Bentonite Pel-Plug pellets
197 196 195 194	- 30_ -			- 30_ -								Collapse
193_ 192_ 191_ 190_	- 35_	<u>ර</u> දිය දිය දිය දිය ගර්ග දිය දිය දිය දේය දිය දිය දිය දිය	GRAVELS up to 15 mn coarse sands, 10 to 20 brown to grey	h in diameter, 20 to 30% % fine silts and clays, light 35							V	2 2 0.8 mm aperture 5 5C screen 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
189_ 188_ 187_ 187_ 186_			CLAY, light brown to gr coherent, some gravels finer sands were not re	ey, chunks are firm and and coarse sands (likely that covered) - 40						5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+	
183_ 184_ 183_ 182_ 181_ 180_	- - 45_	-		- - 45_								
179_ 178_ 177_ 176_ 175_	50	-		50								
174 173 172 172 171 170 169	- - 55_			- - - 55								
168 167 166	60			- - 60								
T = Wa	iter le	evel (stat	GROUNDWATER SYM	3OLS g drilling) → ► = Outflow / Iu	nflow		= Bulk	Sample 🔸	FIELD DATA	v SYMBOL Sample	.S =	Undisturbed Tube Sample

Γ		S	K	M		BOREHOLE No. TB04a
F	Proje ob N	ct: No:	Monito BW07	bring Program Client: Barwon Water 575 Completion Date: 22/5/1 Bore dia: 229 mm	Driller: Go Drill - Simon 4 - 22/5/14 Rig: Hollow auger	Northings: 5742281.8mN Eastings: 209102.4mE Logged: Yes RLNS: 178.8WGS 84 - MZ 54
FIE	LD D	ΑΤΑ	4	SOIL DESCRIPTION	GAMMA LOG P	ROFILE COMMENTS
sample type	elevation (m)	depth (m)	graphic log	soil type, unified classification, colour, structure, particle characteristics, minor components	count per second	(cps) 75 90 105 05 05 05 05 05 05 05 05 05 05 05 05 0
	178-			Clayey SAND, brown-orange with mid-brown mottling, sand is very fine to fine grained, moist, soft		3% bentonite / cement mix
	- 	-		Sandy silty CLAY, orange-brown, sand is very fine, moist, soft		
	176	2		Very clayey SAND, light cream-brown, sand is very fine to fine, soft, moist		
	175-			Sandy CLAY, light cream-brown, sand is very fine, soft, moist		
		4		4- Silty CLAY, light cream-grey-brown, with trace very fine to fine sand, soft, moist		
				-		
		6		6 ⁻ Silty CLAY, light grey-brown-cream, soft to firm, moist, trace very fine sand	M.I.	
	-	-		CLAY, mid-chocolate brown, soft to firm, moist, minor fine flakes of shiny material (mica?)		
	/1 <u>-</u> - -	8		CLAY, chocolate brown to brown-grey, soft to firm, very moist minor fine flakes of shiny material		Bentonite chips
	170 <u>-</u> - -			(mica?).	Ń	
	169 <u>-</u> -	10		10 ⁻ CLAY, mid-brown grey, soft to very soft, moist to very		
	168_	-		moist minor fine flakes of shiny material (mica?).		5/2 gravel
	167_	12	↓~- -~ -~	very moist to wet, very soft, sand is very fine to fine. Becoming very soft at 13 m 12- Slightly sandy silty CLAY, chocolate brown, very		0.8 mm aperture
	166 <u>-</u> -	-		moist to wet, soft, sand is very fine to fine.		
	165	14		14-		
	164					
	163_	16	-	- - 16 ⁻		
	- 162_		-			
	161_	18				
	160_					
	- 159_					
	- 158-	20		20-		
	157					
	156	22		22_		
	-	- - -				
	-	24		24-		
	104-		1	GROUNDWATER SYMBOLS		
Ţ	= Wa	ater l	evel (sta	tic) ↓ = Water level (during drilling) ↓ = Outflow / In	flow = Bulk Sample	= Disturbed Sample = Undisturbed Tube Sample

		S	K	M				BOREHOL	ΕN	o. TB04b
- ,	Proje Job N	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 20/8/1 Bore dia: 114 mm	4 - 20/8/14	Driller: Matrix Rig: Solid auger	Northings: 5742 Eastings: 2091 RLNS: WGS	281.0r)2.0m ; 84 - I	nN E Logged: Yes MZ 54
FIE	ELD D	ATA		Soil de	ESCRIPTION		gamma log pr	ROFILE		COMMENTS
sample type	elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count per second (0	cps) 75 90 105	ground water	drilling method, well construction, water and additional observations
		-		Yellow brown coarse to some diffuse dark brow cohesion	medium grained SAND, mmottles, minor silt, wet, poor	5 5 5 5 5 5				3% bentonite / cement mix
				Dark yellow brown clay medium grained, trace fragments, poor cohesi	ey SAND, sands are coarse to 2-3 mm dark angular lithic on. wet			<u> </u>	Ţ	Sentonite chips
		2- 		Medium yellow brown r SAND, moist from 2-4n cohesion, some minor	nedium to coarse grained nedium to coarse grained n, wet from 4-6m, poor silt, well sorted, sub-rounded 4 4 vellow brown, moderate to					0.4 mm aperture screen
		-		poor cohesion, sands a	re medium grained, very moist				Ţ	
		8 <u>-</u> 		Light yellow sandy slit, cohesion, some minor	clay 8					Natural backfill
		-		moderate cohesion, po	ssibly ligneous					
		12- 	۲۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶۶	Yellow brown clayey sa unconsolidated, poor c	indy SILT, wet,					
				Yellow brown sandy Sil cohesion, some minor	LT, wet, unconsolidated, poor clay 16 ⁻ 18- 18-					
		20- 		Yellow brown medium some minor silt and cla	20- to coarse grained SAND, y, wet, poor cohesion 22- 24-					
	,		<u> </u>	GROUNDWATER SYMI	30LS		<u> </u>	FIELD DATA SYMBO)LS	• n h I
Ŀ	• = Wa	ater le	evel (stat	ic) ≚ = Water level (durin	g drilling) ─ ◀ ▶ ─ = Outflow / Ir	nflow	= Bulk Sample	E = Disturbed Sample	=	Undisturbed Tube Sample

S	SKM								BC	OREH	OLE	N	o. TB04b
Projec Job No	t: o:	Monitor BW075	ring Program 575	Client: Barwon Water Completion Date: 20/8/14 Bore dia: 114 mm	- 20/8/14	Driller: Rig: S	Matrix olid auger	r		Northings: Eastings: RLNS:	574228 209102 WGS 8	31.0n 2.0m 34 - N	nN E Logged: Yes MZ 54
TELD DA	АТА		SOIL [DESCRIPTION			GAMN	/A LOG I	PROFIL	E			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified cla particle characte	ssification, colour, structure, ristics, minor components	15	30	count per 45	second	(cps)	90	105	ground water	drilling method, we construction, wate and additional observations
	26	2000 0000 0000 0000 0000 0000 0000 000	No return - likely to be rig response and mat extraction	e gravels >5 mm based on drill erial recovered during rod 26- 									
	28		Yellow brown mediun some minor silt and c	n to coarse grained SAND,									
	201			20-									
		<u>· . ·</u>											224
	32-			32-									
	34			34-									
:	36												
	40-			40 <u>-</u> - - -									
	42			4 <u>2</u> -									
	44			44-									
	- - - 46_			46_									
	±2 			48- 									
	- 50 -			50-		5 5 5			-	- 	- - - -		

ſ		S	K	M				B	OREH	OLE	N	o. TB04c
	Proje Job I	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 21/8/1 Bore dia: 114 mm	4 - 21/8/14	Driller: Matrix Rig: Solid auger		Northings: Eastings: RLNS:	574228 209102 WGS 8	81.0m 2.0m 84 - N	nN E Logged: Yes MZ 54
F	IELD [ATAC		SOIL DI	SCRIPTION		gamma l	og profil	.E			COMMENTS
eample tune	elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count per sec	ond (cps)	90	105 	ground water	drilling method, well construction, water and additional observations
Γ		-		Yellow brown medium cohesion, moist, silicic	to coarse grained SAND, poor		M					3% bentonite / cement mix
		2		Dark brown to medium are coarse, some mino moderate cohesion, sli	brown clayey SAND, sands r gravels up to 4 mm, poor to ghtly moist 2 ⁻							
		-		Brown grey sandy CAL minor gravels up to 4 n cohesion, slightly mois	Y, sands are coarse, some Im, poor to moderate t							
		4		Yellow brown sandy Cl high plasticity, moist, fi are medium grained	AY, cohesive, moderate to rm, diffuse grey mottles, sands 4-			2.	2			
				Light brown to grey bro cohesive, some mica, l	wn heavy CLAY, firm, nigh plasticity, moist					· / ·		
		6			6			V				
		-										
		8-		Medium chocolate brow high plasticity, some m	vn CLAY, firm to soft, moist, inor silt. 8-		· · · · · ·					
		-								Λ		
		10					M	×				
							~		_			
				Very dark chocolate bro soft, poor cohesion, we	own CLAY, possibly ligneous, t, low plasticity, trace medium				2	-		
		12-		Salius	12-					- N -		
		-				Y						
		14-			14_		3					
		-					\leq					
		16-			16-							
		-	 -	Medium to dark brown	clayey SAND, medium to		M					
		18-		moist	us, moderate conesion, slightly 18-	Ŷ						
		-		Medium to dark brown	sandy CLAY, sands are -	-	M					
		20-		medium to coarse grain cohesion, slightly mois Yellow brown to grey b	ned and siliceous, moderate t, moderate to poor plasticity 20- rown gravelly SAND, coarse							
		-	00000000000000000000000000000000000000	grained, sub rounded to moist to dry, some silts	o rounded, siliceous, slightly and clays,							
		22-	00000		22-			- 2				
				Dark brown and the Ch	V firm frights madet-		M					Dontonito - Lizz
		24		plasticity, sands are co ~30% to 24m and ~109	arse grained, sand component			· · · · · · · · · · · · · · · · · · ·				
ļ		-			- - -		\sim	M	-	* * * *		
	Z _ 14/	ator	wal (ctat	GROUNDWATER SYM	BOLS	flow	🔳 – Rulk Sa	mnle 🛋	FIELD DATA	SYMBOL:	S –	Indisturbed Tube Sample
	= vv	aiei It	sver (Stål	ic) 😑 – vvalet levet (uUIII	yarning) ▼▼ = Outnow/In	IIUW			Pistainea S	апріс	_	Shanstaribed Tube Sample

		S	K	M					BO	REH	OLE	N	o. TB04c
	Proje Job I	ect: No:	Monito BW075	ring Program 575	Client: Barwon Water Completion Date: 21/8/ Bore dia: 114 mm	4 - 21/8/14	Driller: Mat Rig: Solid	rix auger	N E: R	orthings: astings: LNS:	574228 209102 WGS 8	1.0m 2.0mE 4 - N	N E Logged: Yes Z 54
FI	ELD [DATA		SOIL D	ESCRIPTION			gamma log	PROFILE				COMMENTS
samnla tvna	elevation (m)	depth (m)	graphic log	soil type, unified cla particle character	sification, colour, structure, stics, minor components	15	cou 30	nt per second 45 60	I (cps) 75	90	105 	ground water	drilling method, well construction, water and additional observations
Γ		26	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Sandy, clayey SILT, we plasticity, sands are m	et, soft, poor cohesion, low edium grained 26		\leq		>	- - - - - -			5/2 gravel
		28- 		Coarse to medium gra some gravels up to 8 r and siliceous, some cl 28m	ned SAND, yellow brown, Im, gravels are sub angular ay, moist becoming wet at 28_ - 30_ 30_		Mr MM MM		-			¥_ ▼_	0.4 mm aperture screen
		32 34 36 38 40 40 42			32 - 34 - 36 - 38 - 40 - 42 - 44 - - 44 - - 44 - - - - - - - -								
		48-			- 48_ -								
		ater le	evel (stati	GROUNDWATER SYM c)	BOLS ag drilling) —	nflow		= Bulk Sample	Fie e • = D	ELD DATA Disturbed S	SYMBOL: ample	S = I	Undisturbed Tube Sample

		S	K	M					BORE	HOL	E	No. TB05
Pro Joi	ojec o No	o:	Monito BW07	ring Program 575	Client: Barwon Water Completion Date: 20/5/14 Bore dia: 114 mm	4 - 21/5/14	Driller: Matri Rig: Solid a	x uger	Northings: Eastings: RLNS:	574180 207224 229.1V	09.4n 4.2ml VGS	nN E Logged: Yes 84 - MZ 54
FIELD) DA	ATA		SOIL DE	SCRIPTION		G	amma log pro	DFILE			COMMENTS
sample type		depth (m)	graphic log	soil type, unified clas particle characteris	sification, colour, structure, stics, minor components	15	coun 30 4	t per second (cp 5 60	os) 75 90	105	ground water	drilling method, well construction, water and additional observations
22 22 22 22 22 22 22 22 22 21 21 21 21 2		2 4 6 10 12 14 16 20 22 24 24 24 24		Sandy SOIL, loose Sitty SAND, mid orange fine to fine grained (don consolidated sandy clay orange and cream, dry Clayey SAND with lowe S-7m, bright mid-orange and 9-10m, orange-creat loose unconsolidated the grained with trace meditors consolidated clayey sar and dry to moist. Some from 8-9m. CLAY, light grey, with m mottling, moist, consolidated the same from 8-9m. CLAY, light brown-grey, consolidated clay with f brown-grey mottling and CLAY, light brown-grey, consolidated clay with f brown-grey mottling and Clayey SAND, yellow-b mottled, loose, sand is grained sand, traces of consolidated chunks of Clayey SAND, light creat fine to coarse (predomin minor gravel 2-4mm, dr chunks are loose CLAY, light chocolate b brown-grey, moist, coms Sandy CLAY, light chocolate b brown-grey, moist, coms Sandy CLAY, light chocolate b brown-grey mottled light component increases to grained and traces of Clayey SAND, sand is f medium grained), wity to to rounded, quartz domina brown-grey mottled light component increases to grainsize is 5-20 mm to to dominatly 15-15 mm 10-15 mm at 22 m Slightly sandy CLAY, gri is fine grained, traces of Sample not recovered	-brown, loose, sand is very inantly very fine), with some , mottled mid orange-brown, 2- o moist r clay content from 2-3m and am mottles at 4-5m and 8-9m,							Bentonite
	Wat	er le	evel (stat	GROUNDWATER SYME	GOLS g drilling) → ► = Outflow / In	flow		= Bulk Sample	FIELD DATA = Disturbed S 	SYMBOL	.S =	Undisturbed Tube Sample

Project: Monitoring Program Client: Bankow Water Dollier: Matrix Northings: S741808-MM Early in a client And a client Jub Ko: BUUDS75 SOL DESCRPTION Common Date: 200414 - 21/SH4 Kigs Solid auger Bankings: 202124.206 Lient Karlow HELD DAT SOL DESCRPTION Common Date: Solid C	Project: Mo Job No: BW	onitoring Program W07575 SOIL I Soil type, unified cla particle character Sample not recovered Very slightly sandy Cl very fine to fine graine brown sandy soil from	Client: Barwon Water Completion Date: 20/5/1- Bore dia: 114 mm DESCRIPTION Issification, colour, structure, ristics, minor components	4 - 21/5/14 	Driller: Rig: So	Matrix olid auger GAMM count per :	A LOG PR	Ni Ea Ri OFILE	orthings: astings: _NS:	574180 207224 229.1W	9.4m .2mE /GS	COMME	d: Yes
FIE D DATA SUIL DESCRPTION CAMMA LOC PROFILE COMMENTS SILE 0 0 particle characteristication, colour, structure, particle characteristication, colour, structure, inforce components count per second (cps) 00	IELD DATA () () () () () () () () () () () () () (Soll I soil type, unified cla particle characte Sample not recovered very fine to fine graine brown sandy soil from	DESCRIPTION assification, colour, structure, ristics, minor components	15		GAMM	A LOG PR	OFILE				COMME	ENTS
Image: Second (type) South pre-unified description Count per second (type) The sec	(m)	Soil type, unified cla particle character Sample not recovered very fine to fine graine brown sandy soil from	assification, colour, structure, ristics, minor components (<i>continued</i>) 	15		count per	second (c						
20 24 Sample rol eccent control (control) 33 22 4 Very sightly stady CLAY, gery, molet, soft, and is any with the fire graded starge containing wit	203 26 202 26 202 28 201 28 201 28 201 28 199 30 199 30 199 30 197 32 198 4 197 32 196 4 195 34 194 4 194	Sample not recovered Very slightly sandy C very fine to fine graine brown sandy soil from	d (continued) 		30	45	60	:ps) 75	90	105 	ground water	drilling m construc and a obsei	ethod, wel tion, water dditional rvations
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		surface									Pel-P	avel m aperture n

	SK	M					BO	REH	OL	ΕI	No. TB07
Projec Job No	et: Mon b: BW(itoring Program)7575	Client: Barwon Water Completion Date: 28/5/1 Bore dia: 229 mm	4 - 29/5/14	Driller: Go E Rig: Hollow	Drill - Simon v auger	Nort East RLN	hings: 5 tings: 2 IS: 2	74007 03872 24.3W	4.3m .1mE GS	nN Ξ Logged: Yes 84 - MZ 54
FIELD DA	ATA	SOIL D	ESCRIPTION		(gamma log p	ROFILE				COMMENTS
sample type elevation (m)	depth (m) graphic log	soil type, unified cla particle character	ssification, colour, structure, ristics, minor components	15	coun 30 4	nt per second (15 60	(cps) 75	90	105 	ground water	drilling method, well construction, water and additional observations
224 223 222 221 221 220 219 219 218 217 216 217 216 217 216 217 217 216 217 217 217 216 217 217 217 216 217 217 217 217 218 217 218 217 218 218 217 218 217 218 218 218 218 218 218 218 218		Silty SAND, medium t silicic, moderate mois Silty SAND, medium t silicic, moderate mois Silty SAND, medium t silicic, moist Silty SAND, medium t silicic, wet Medium to fine graine trace silt and clay, we Silty CLAY, light grey, Silty CLAY, light grey,	nedium chocolate brown, dry, 2 prown to dark orange, coarse, ture content 2 prown to dark orange, coarse, 3 prown to dark orange, coarse, 6 d SAND, light brown to yellow, 1 and unconsolidated, trace 10 wet, unconsolidated 12 14 14 16 18 18 18 18 18 18 18 18 18 18								3% bentonite / cement mix AMC Bentonite chips 5/2 gravel 0.8 mm aperture screen Fall in
💻 = Wate	er level (s	GROUNDWATER SYN tatic) ⊻ = Water level (duri	1BOLS ng drilling) ◀ ▶ = Outflow / Ii	nflow		= Bulk Sample	FIELD ● = Distu	DATA SY urbed Sam	/MBOLS	=	Undisturbed Tube Sample

S	SK	M						BOF	REH	HOL	EI	No. TB08
Project Job No	t: Mo b: BV	nitoring Program V07575	Client: Barwon Water Completion Date: 28/5/14 Bore dia: 114 mm	- 28/5/14	Driller: Rig: Se	Matrix olid auge	r	North Eastii RLNS	ings: ngs: S:	573980 210574 151.3W)8.3m 1.7mf VGS	1N E Logged: Yes 84 - MZ 54
FIELD DA	TA	SOIL	DESCRIPTION			GAM	Ma log pro	FILE				COMMENTS
sample type elevation (m)	depth (m)	soil type, unified cl particle charact	assification, colour, structure, eristics, minor components	15	30	count per 45	60	s) 75 9	0	105 I	ground water	drilling method, we construction, wate and additional observations
126 2 125 -	26 2 2 26 2 2 26 2 2 26 2 2 26 2 2 26 2 2 2 26 2 2 2 2 2	Ligneous CLAY or P plasticity, moderate (<u>v w</u> <u>v w</u> texture (continued) <u>v w</u> <u>v w</u>	EAT, dark brown, moderate o low moisture content, fibrous 26- 				W		4 4 5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			Fall in
124	& & & & & & & & & & & & & & & & & &				-	5 5 5 5		•	• • • •	5. 5. 5. 5. 5. 5. 5.		
123- 123- 122-			20									
121- 121- 120-	30-		30									
119-	32- 		32						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
118 <u>-</u> - 3 117 <u>-</u>	34-		34-									
116 3 115	36-		36									
114 <u>-</u> 3 113 <u>-</u>												
112 <u></u> 4 111 <u></u> 4	10- 1- 10-											
110 <u></u> 4 109 <u></u>	+ + +2 +		42-									
108 <u>-</u> 108 <u>-</u> 4 107 <u>-</u>	- - - 14- -											
106 <u></u> 4 105 <u></u> 4	16 16								4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
104- 104- - 4 103-												
102 5	- - - - 50 -		50-							• • • • • • • • •		
🛓 = Wate	er level	GROUNDWATER SY (static) ⊻ = Water level (du	MBOLS Iring drilling)	ow		= Bu	Ik Sample	FIELD	DATA : bed Sa	SYMBOL ample	S =	Undisturbed Tube Samp

S	K	M				BORE	HOL	E١	No. TB09
Project: Job No:	: Monito : BW07	oring Program 7575	Client: Barwon Water Completion Date: 26/5/1 Bore dia: 229 mm	4 - 26/5/14	Driller: Matrix Rig: Hollow auger	Northings: Eastings: RLNS:	573348 208632 156.1W	5.3n .1ml /GS	nN E Logged: Yes 84 - MZ 54
FIELD DAT	TA	SOIL D	ESCRIPTION		Gamma Log Pr	OFILE			COMMENTS
sample type elevation (m) denth (m)	depun (m) graphic log	soil type, unified cla particle character	ssification, colour, structure, istics, minor components	15	count per second (c 30 45 60	ps) 75 90	105 	ground water	drilling method, well construction, water and additional observations
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		Light grey to yellow-gr moderate plasticity, fir Light grey to yellow-gr moderate plasticity, co Light grey to yellow-gr unconsolidated, trace	ey CLAY, some moisture, m to soft		M M M M M	FIELD DATA	SYMBOL		 3% bentonite / cement mix Bentonite Pel-Plug pellets 5/2 gravel 0.8 mm aperture screen Fall in
💻 = Water	r level (sta	tic) 👱 = Water level (duri	ng drilling) — 🕨 = Outflow / Ir	flow	= Bulk Sample	 = Disturbed S 	ample	=	Undisturbed Tube Sample

	S	K	M					BORE	HOL	ΕI	No. TB10
Proje Job N	ct: lo:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 21/5/1 Bore dia: 114 mm	4 - 21/5/14	Driller: Matrix Rig: Solid aug	ger	Northings: Eastings: RLNS:	573776 204874 215.4W	9.7m .1mE /GS	N E Logged: Yes 84 - MZ 54
FIELD D	ATA		SOIL DI	ESCRIPTION		GA	mma log profi	LE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count p 30 45	er second (cps) 60 75	5 90	105 	ground water	drilling method, well construction, water and additional observations
215_	-	k (Silty CLAY, mid-brown and orange mottling, so	grey with black, brown, grey oft to firm, trace fine sand							3% bentonite / cement grout
214 213 212 212 212	2-		CLAY, mid-brown-yello mottling, firm to stiff, m CLAY, mid-brown, soft CLAY, mid brown to ch trace fine sands	w with grey and orange oist, trace fine sand 2 to firm, moist, trace fine sand 4 ocolate brown, soft to firm,		5					Bentonite chips
210- 209- 208- 207-	6 		CLAY, mid brown to ch sands, moist and beco	ocolate brown, soft, trace fine ming wet at 7 m 6 8							5/2 gravel pack 0.4 mm aperture screen
206- 	10 12		CLAY, very dark brown fine chips of shiny mate CLAY, very dark brown mottles, stiff to very stif shiny material (mica?)	stiff to very stiff, very moist, arial (mica?) with elongate diffuse grey f, very moist, fine chips of 12		(Pel Plug vpentonite chips 5/2 gravel pack
201- 200- 199- 198- 198-	14 			14 16 							
197_ 196_ 196_ 195_ 195_ 194_ 193_ 193_ 193_ 192_ 192_ 192_ 192_	20			20							
191- 	ter le	evel (stati	GROUNDWATER SYM ic)	30LS g drilling)	nflow	=	Bulk Sample ●	FIELD DATA = Disturbed S	SYMBOL: ample	S =	Undisturbed Tube Sample

	SK	M				BOREHOL	E	No. TB11		
Projec Job N	o: BW0	itoring Program)7575	Client: Barwon Water Completion Date: 22/5/14 Bore dia: 114 mm	4 - 23/5/14	Driller: Matrix Rig: Solid auger	Northings: 57347 Eastings: 20719 RLNS: 134.2V	61.7n 9.3m VGS	Sheet 1 of 1 nN E Logged: Yes 84 - MZ 54		
FIELD DA	ΑΤΑ	SOIL E	DESCRIPTION		Gamma Log Pro	DFILE		COMMENTS		
sample type elevation (m)	depth (m) graphic log	soil type, unified cla particle characte	ssification, colour, structure, ristics, minor components	15	count per second (cp 30 45 60	75 90 105	ground water	drilling method, well construction, water and additional observations		
133- 132- 131- 132- 131- 132- 131- 132- 123- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 124- 125- 126- 127- 127- 126- 127- 126- 127- 127- 120- 121- 121- 111- <td></td> <td>GROUNDWATER SYN</td> <td>D, light grey, sand is very fine to very moist, soft ight brown-yellow and yellow ine, very moist, soft to firm. ight brown-yellow and yellow over , very soft, sand is fine to blate brown, very firm, many al (mica?) 12 14 14 14 16 18 20 22 24 24 24 24 24 24 24 24</td> <td></td> <td></td> <td>FIELD DATA SYMBOI</td> <td>₽ ₽ ₽</td> <td>Bentonite chips 5/2 gravel pack 0.8 mm aperture screen</td>		GROUNDWATER SYN	D, light grey, sand is very fine to very moist, soft ight brown-yellow and yellow ine, very moist, soft to firm. ight brown-yellow and yellow over , very soft, sand is fine to blate brown, very firm, many al (mica?) 12 14 14 14 16 18 20 22 24 24 24 24 24 24 24 24			FIELD DATA SYMBOI	₽ ₽ ₽	Bentonite chips 5/2 gravel pack 0.8 mm aperture screen		
y = Water level (static) y = Water level (during drilling) → → = Outflow / Inflow = Bulk Sample = Disturbed Sample =										

	S	KM					I	BORE	HOL	Eľ	No. TB12
Proje Job N	ect: I No: I	Monitoring Prog BW07575	ram (Client: Barwon Water Completion Date: 27/5/1 Bore dia: 114 mm	4 - 27/5/14	Driller: Matrix Rig: Solid a	uger	Northings: Eastings: RLNS:	573813 207614 172.5W	3.1m .7mE /GS 8	Sneet 1 of 1 N E Logged: Yes 84 - MZ 54
FIELD	ОАТА		SOIL DESC	RIPTION		G	amma log profi	LE			COMMENTS
sample type elevation (m)	depth (m)	ຍ o b b partic b b	, unified classifi le characteristic	cation, colour, structure, s, minor components	15	count 30 45	per second (cps)	5 90	105 	ground water	drilling method, well construction, water and additional observations
172- 171- 171- 171- 171- 171- 171- 171- 171- 171- 171- 171- 171- 169- 166- 166- 166- 166- 166- 166- 166- 166- 166- 166- 166- 166- 167- 168- 161- 162- 155- <		Yellow-b coherent Plasticity Plasticity	rown sandy CLAY , friable rown sandy CLAY , coherent	div, firm, low plasticity, 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4	flow.			FIELD DATA	SYMBOLS		Bentonite / cement mix Bentonite Pel-Plug pellets 5/2 gravel 0.8 mm aperture screen
<u>t</u> = ₩	ater lev	vei (static) ≚ = N	rater level (during dr	illing) — 🖛 = Outflow / In	TIOW		= BUIK Sample	= disturded Sa	ample	= (undisturbed Tube Sample

		5	K	M	E	BORE	HOL	E١	No. TB13			
	Proje Job N	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 22/5/1 Bore dia: 114 mm	4 - 22/5/14	Driller: Matrix Rig: Solid auger		Northings: Eastings: RLNS:	573687 206081 188.9W	′4.9m .8mf /GS	nN E Logged: Yes 84 - MZ 54
FIE	ELD D	ΑΤΑ	À	Soil de	SCRIPTION		GAMMA	LOG PROFIL	E			COMMENTS
sample type	elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count per se	econd (cps) 60 75	90	105 	ground water	drilling method, well construction, water and additional observations
	- 188			CLAY, mid-grey-brown orange-brown mottling,	with dark brown and	4 4 4 4 4 4		\mathbb{N}	4 			3% bentonite / cement mix
	187 -	-		CLAY, light grey to oran mottles, firm to stiff, mo	nge-brown with mid-brown			Υ. 				
	186-	<u> </u>		CLAY, light grey with m moist	id-brown mottles, firm to soft,							
	105	-		CLAY, orange-brown-y	ellow, soft, moist				-			
		4			4-						Ţ	
	184_	-		CLAY, orange-brown-ye moisture content increa	ellow, soft to very soft, - lsing from moist at 6 m to very							Pel Plug bentonite pellets
	183-	6_		wet at 10 m	6			MM	_			
	182_	_			-		4		_			5/2 gravel
	181-	8			- 8- -		-		~			
	180-	-						<u> </u>			Ā	0.8 mm aperture
	179-	10_		CLAY mid-brown with	- 10- light grey, orange and cream							screen
	178-	_		mottling, very stiff, mois (mica?)	st with very fine shiny material				- - - - - - - - - - - - - - - 			
	- 177	12			- - 12 <u>-</u>				_			
	- 176-											Backfill
	- 175 <u>-</u>	14	-		- - 14 <u>-</u>							
	174-	_										
	173 <u>-</u>	16_			- - 16 <u>-</u>							
	 172											
	 171	18										
	- 170-	-										
	169-	20										
	168-	20_										
	167-	-										
	- 101	22_			22-							
	166-	-			- 				•			
	165-	24			24-				- - - - - - - - - - - - - - - - - - -			
	164_		1		301 S					SYMROU	 s	
Ţ	- = Wa	ater I	evel (stat	ic) $\overline{\underline{\nabla}}$ = Water level (durin	g drilling) — 🕨 = Outflow / Ir	nflow	= Bulk S	ample 🔸	= Disturbed S	ample	=	Undisturbed Tube Sample

	(S	K	M				BOREH	IOL	EI	No. TB14
	Proje Job	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 21/8/14 Bore dia: 114 mm	4 - 21/8/14	Driller: Matrix Rig: Solid auger	Northings: Eastings: RLNS:	573772 203100 WGS 84	5.0m .0mE 4 - N	N E Logged: Yes Z 54
F	IELD I	DATA		SOIL DE	SCRIPTION		GAMMA LOG PRO	FILE			COMMENTS
	elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count per second (cp 30 45 60	s) 75 90	105	ground water	drilling method, well construction, water and additional observations
		- 2 2 4 6 10 12 14 16 18 20 22 24		Dark grey brown CLAY cohesion low to moder. Dark grey brown CLAY to low plasticity increas 2 and 3m. Dark grey brown CLAY plasticity between, trac Yellow brown silty CLA sands, soft, wet, cohes Sandy SILT, wet, grey t are medium grained models	firm, dry, friable, poor the plasticity moist, soft to firm, moderate ing to high plasticity between 2 moist, soft to firm, high a medium grained sands. 4 f, some medium grained ve, low to moderate plasticity by ellow brown, soft, sands oderate cohesion 10 12 12 12 12 12 12 12 12 12 12 12 12 12						3% bentonite / cement mix Bentonite chips 5/2 gravel 0.4 mm aperture screen
	= W	ater le	evel (stat	GROUNDWATER SYMI ic)	g drilling) → ► = Outflow / In	flow	= Bulk Sample	FIELD DATA S	SYMBOLS mple	5	Undisturbed Tube Sample

	S	K	M				BOREH	OLE	No	D. UBCk1
Proj Job	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 21/5/1 Bore dia: 114 mm	4 - 21/5/14	Driller: Go Drill - Simor Rig: Solid auger	n Northings Eastings: RLNS:	: 574247 207366 217.3W	76.8n 6.6ml VGS	nN E Logged: Yes 84 - MZ 54
FIELD	DATA	4	Soil de	SCRIPTION		Gamma Log	PROFILE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	15	count per secon	rd (cps) 75 90	105	ground water	drilling method, well construction, water and additional observations
217_ 216_ 215_ 214_ 213_ 212_ 211_ 210_ 209_ 209_ 209_ 209_ 209_ 209_ 200_ 200	2^{-} 2^{-} 4^{-} 6^{-} 10^{-} 12^{-} 14^{-} 14^{-} 22^{-} 24^{-} 24^{-}		Very slightly sandy CL/ dry to moist, s gravel and organic mat Silty, slightly gravely S/ becoming reddish brow grained (dominantly lar gravel, dry, minor chur Consolidated portions i CLAY, light grey with ling grey-cream mottling, di traces of very fine sand and brown grey from 6 increase at 8 m.	rown, sand is fine to medium ome angular fine to medium and 3m, sand is fine to large ge), much fine to medium hr. fine to medium ge), much fine to medium hr. fine to medium s of consolidated silty sand. hr. recasing in prevalence to 4m and y to slightly moist, firm to stiff, Becoming less dense at 6 m to 8 m. Moisture content 6 W, light grey to medium grey, is very fine. Colour change to at 10 m, brown grey at 11 m 10 11 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		M. M				 3% bentonite / cement mix Bentonite chips Void Void Screen Collapse and fall in
T = W	later l	evel (stat	GROUNDWATER SYMI ic)	3OLS g drilling) ─ 4 ▶ = Outflow / Ir	flow	= Bulk Samp	FIELD DATA	SYMBOL Sample	S =	Undisturbed Tube Sample

GAMMA.GDT SKM GROUNDWATER1 VW07575_LOGS.GPJ SKM_

	S	K				BOREHOLE No. UDvCk Sheet 2 of 2						
Proj Job	ect: No:	Monito BW07	oring Program /575	Client: Barwon Water Completion Date: 2/6/14 Bore dia: 200 mm	- 4/6/14	Driller: Rig: M	Go Drill - Al lud rotary	llen	Northings: Eastings: RLNS:	573996 207138 240.8W	67.1m 8.1mf /GS	nN E Logged: Yes 84 - MZ 54
FIELD	DAT	A	Soil de	SCRIPTION			GAMMA	LOG PROF	ILE			COMMENTS
sample type elevation (m)	depth (m)	graphic log	soil type, unified clas particle characteri	sification, colour, structure, stics, minor components	1	5 30	count per se	econd (cps)) 5 90	105	ground water	drilling method, well construction, water and additional observations
215 214 213 212 211 211 210 209 208 207 206 205 204 202 201 202 201 199 198 197 198 197 198 197 198 197 199 199 199 199 199 199 199	26 28 30 - 32 - 32 - - 34 - - - - - - - -		CLAY, grey, wet, soft, s 2-4mm diameter, possi CLAY, grey, wet, soft, s 2-4mm diameter, possi CLAY, grey, wet, soft to gravel 2-4mm diameter CLAY, grey, wet, soft to gravel 2-4mm diameter CLAY, grey, wet, soft to gravel 2-4mm diameter CLAY, grey, wet, soft to gravel 2-4mm diameter minor fine angular dark CLAY, grey, soft to firm grey mottling CLAY, grey, soft to firm grey mottling CLAY, grey, soft to firm grey mottling CLAY, grey, very moist sand, few very angular SANDSTONE? cement angular and dark (lignit CLAY, grey, very moist sand, few very angular CLAY, grey, very moist sand, few very angular CLAY, grey, very moist sand, few very angular SANDSTONE? cement angular and dark (lignit CLAY, grey, very moist sand, few very angular SANDSTONE? cement angular and dark (lignit CLAY, grey, very moist sandy CLAY, grey, very to fine grained, domina gravel (lignite?) Sandy CLAY, grey, very solar and dark (Sandy CLAY, grey, very	ARAYEL, sand is coarse, meter to 20m and <6mm from lar to sub-rounded and 26 ht grey and translucent grains range-grey-cream, (possible ugh sieve on collection) 28 30 30 30 30 30 30 30 30 30 30 30 30 30		M. M						Bentonite Pel-Plug pellets
			GROUNDWATER SYM	BOLS		. i	·		FIELD DATA	SYMBOL	S	<u>.</u>
<u> </u>	Vater	level (sta	tic) 👱 = Water level (durin	g drilling) — 🕨 = Outflow / Ir	nflow		= Bulk S	Sample 🛛 🕈	= Disturbed S	ample	=	Undisturbed Tube Sample

	S	K					BC	DREH	OLE	N	D. UDvCk	
Proj Job	ect: No:	Monito BW07	oring Program 575	Client: Barwon Water Completion Date: 2/6/14 - Bore dia: 200 mm	- 4/6/14	Driller: Go Drill - Allen Rig: Mud rotary		Northings Eastings: RLNS:	: 573996 207138 240.8V	67.1n 3.1ml VGS	nN E Logged: Yes 84 - MZ 54	
FIELD	DAT	A	SOIL D	ESCRIPTION		GAMMA LO	g profil	E			COMMENTS	
sample type elevation (m)	depth (m)	graphic log	soil type, unified cla particle character	ssification, colour, structure, istics, minor components	15	count per secor	nt per second (cps) 45 60 75 90 105			drilling method, wel construction, water and additional observations		
190 189 188 187 186 185 184 182 182 181 182 182 181 179 179 179 179 179 179 179 179 179 17	52 54 54 56 60 - 62 62 - 62 - 62 - - 62 - - - - - - - - - -		Image: heat of the series o	rk grey to black with some light e gravel (lignite?) nted with grey clay?, sand is (lignite?), rock is harder than ry moist, soft, sand is very arse grained, dominantly lack and white, minor black fine arse grained, dominantly lack and white, minor fine ameter (lignite?) 156 ted with grey clay?, sand is some black very angular fine black, some to minor fine black 58 rr (lignite?) 60 60 61 62 62 64 64 64 64 64 64 64 64 64 64 64 64 64							0.8 mm aperture screen	
Y = V	Vater	level (sta	GROUNDWATER SYN	IBOLS ng drilling) → ► = Outflow / Inf	low	= Bulk Sam	ple •	FIELD DATA	A SYMBOL Sample	.S =	Undisturbed Tube Sample	

	Lo	go	J	lacob	S				BORI	EHOLE	NUMBER RB10913 PAGE 1 OF
CL	LIEN	IT _B ECT N	_ arwo	on Wa	ater RR1	09136	6			on Downs mon	itoring program
DA DF	ATE	STAF	RTE CON	D <u>1</u>	0/2/15	Go	Drilling	COMPLETED <u>12/2/15</u>	R.L. SURFACE SLOPE 0°		DATUM
EC HC NC	QUIF DLE DTE	SIZE	Γ _ _14 rill R	HAM. 40 mr Rig no	<u>JIN MF</u> m .: DRC	> <u>35</u>)2			HOLE LOCATION _End of LOGGED BY _A Koller	McCalls Lane	CHECKED BY S Parsons
Method	Water	We	ell ails	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Material Des	cription	Samples Tests Remarks	Additional Observations
Mud RotaryADB					- - 2 - -			Light brown/grey topsoil Light brown/grey Silty CLAY. High plastic	ity.		
					<u> </u>			Light brown/grey/orange clayey SILT. Sor Light brown silty CLAY, some coarse san Light to dark brown CLAY, high plasticity	ne medium grained sands. ds		
					<u>8</u> - 1 <u>0</u> -		• •	Light brown tending to black clayey SILT diameter) Coarse quartz SANDS (1-3 mm diameter	with coarse quartz sands (~2mm), some light brown clay present		
					1 <u>2</u> - 1 <u>4</u>			diameter)			
					1 <u>6</u> - 1 <u>8</u>			Light grey sandy SILT. Sand is 1-3mm, se Light grey clayey SILT. SILT is coarse. Sr quartz (1-2mm diameter)	emi-angular quartz. nall presence of semi-angular		
					2 <u>0</u> - 2 <u>2</u>		· · ·	Coarse light grey sandy SILT. Sand is qui diameter). Light brown clayey SILT. Some coarse ar mm diameter).	artz and angular (1-3 mm gular quartz sands present (1-3		
					2 <u>4</u>		- - - - -	Light brown/grey silty SAND. SAND is co mm diameter).	arse and semi-angular quartz (1-4		
					2 <u>6</u> - 2 <u>8</u>	Ø		Grey clayey GRAVEL. GRAVEL is semi-a	ngular, 4-10 mm diameter.		
					3 <u>0</u> 3 <u>2</u>						
					3 <u>4</u> 						
					3 <u>8</u> - 40			Bluey-grey CLAY			

Appendix B. Photographs

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
A1	55	216799	5740303	164.191	41.68	37.5	40.5	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
A2	55	212783	5741862	155.554	40.72	35.8	38.8	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
A3	55	212792	5742428	140.736	13.57	9.5	12.5	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
A4	55	213949	5744373	208.915	40.53	35.3	38.3	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
A5a	55	215315	5740043	141.175	98.45	95.1	98.1	

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
A5b	55	215315	5740046	141.196	18.58	14.5	17.5

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
A6a	55	208616	5737364	171.469	97.7	93.7	96.7

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
A6b	55	208779	5737346	167.878	18.22	14.15	17.15	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
RB1	55	208525	5740347	232.357	92.3	88.1	91.1	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB1a	55	212070	5742075	143.969	12.91	8.65	11.65	

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
TB2b*	54	734665	5743805	N/A	7.19	3.69	6.69

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB3	55	208134	5741691	225.536	39.52	31.5	37.5	

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
TB4a	55	209102	5742282	178.746	14.89	11.2	14.2

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
TB4b*	55	209102	5742281	N/A	7.67	4.17	7.17

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
TB4c*	55	209102	5742281	N/A	31.01	27.45	30.45

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB5	55	207224	5741809	229.103	32.58	29	32	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB6	55	205447	5741049	243.052	22.01	17.85	20.85	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB7	55	203872	5740074	224.335	9.41	5.2	8.2	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB8	55	210575	5739808	151.327	27.04	22.96	25.96	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB9	55	208632	5733485	156.097	12.03	7.7	10.7	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB10	55	204874	5737770	215.412	10.92	7	10	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB11	55	207199	5734762	134.197	10.9	7	10	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB12	55	207615	5738133	172.477	12.19	8.06	11.06	

Site			Survey D	etails	Construction Details (m - bgl)			
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to	
TB13	55	206082	5736875	188.884	13.18	9	12	

Site			Survey D	etails	Construction Details (m - bgl)		
ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
TB14*	55	203100	5737725	N/A	11.59	8.5	11.5

Site ID			Survey D	etails	Construction Details (m - bgl)		
	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
UBCk1	55	207367	5742477	217.302	21.47	16.5	19.5

Site ID			Survey D	etails	Construction Details (m - bgl)		
	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
UBCk2	55	207391	5743149	193.518	18.57	14.34	17.34

Site ID Survey Details				Construction Details (m - bgl)			
Site ID	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
UDvCk	55	207138	5739967	240.796	60.98	55.8	58.8

Site ID Survey Details			Construction Details (m - bgl)				
Site iD	MZ	Easting	Northing	Pad Elevation (m)	Tot. Depth	Screen from	Screen to
109136*	54	733484	5745569	182.7	40.0	28.0	37.0

Appendix C. Additional Survey Results

CLIENT: Go Drill Pty Ltd JOB: Gerangamete Area Borehole Survey DATE OF SURVEY: 12/08/2014 - 15/08/2014 & 22/08/2014 SURVEY METHOD: POST-PROCESSED GPS OBSERVATIONS USING BASE STATION & MELPOS NETWORK REAL TIME KINEMATIC GPS OBSERVATIONS COORDINATE SYSTEM: MGA ZONE55 LEVEL DATUM (HEIGHT): AHD

JOB REF: 1947-01 VERSION: 1

POINT ID	Easting	Northing	Height	Description	Reference
PM11	211756.14	5744387.86	232.63	PERMANENT MARK	
(PM11) ECC A	211749.05	5744369.87	232.38	PERMANENT MARK	
PM16	216872.69	5737249.34	164.86	PERMANENT MARK	
PM17	217156.03	5737237.86	164.26	PERMANENT MARK	
PM46	201432.32	5748635.13	142.47	PERMANENT MARK	
PM60(DATUM)	201642.24	5749461.84	138.14	PERMANENT MARK	DATUM
PM77	201468.87	5749480.45	137.26	PERMANENT MARK	
PM103	207830.82	5731818.61	232.30	PERMANENT MARK	
RM1 38 BROOK	206101.89	5738339.65	206.05	PERMANENT MARK	
A1 - Lid	216799.48	5740303.47	164.72	BORE HOLE - Lid	
- Concrete Base			164.19	- Concrete Base	
A2 - Lid	212783.47	5741862.08	156.03	BORE HOLE - Lid	
- Concrete Base			155.55	- Concrete Base	
A3 - Lid	212792.18	5742428.06	141.27	BORE HOLE - Lid	
- Concrete Base			140.74	- Concrete Base	
A4 - Lid	213948.52	5744372.60	209.42	BORE HOLE - Lid	
- Concrete Base			208.92	- Concrete Base	
A5A - Lid	215314.90	5740043.37	141.82	BORE HOLE - Lid	
- Concrete Base			141.18	- Concrete Base	
A5B - Lid	215315.32	5740046.18	141.72	BORE HOLE - Lid	
- Concrete Base			141.20	 Concrete Base 	
A6A - Lid	208616.19	5737364.38	171.95	BORE HOLE - Lid	
- Concrete Base			171.47	 Concrete Base 	
A6B - Lid	208778.79	5737346.45	168.39	BORE HOLE - Lid	
- Concrete Base			167.88	- Concrete Base	
RB1 - Lid	208524.65	5740347.42	232.98	BORE HOLE - Lid	
- Concrete Base			232.36	- Concrete Base	
TB1 - Lid	212070.45	5742075.05	144.45	BORE HOLE - Lid	
- Concrete Base			143.97	 Concrete Base 	
TB2 - Lid	210789.51	5742057.28	174.80	BORE HOLE - Lid	
- Concrete Base			174.16	 Concrete Base 	
TB3 - Lid	208133.87	5741691.23	225.95	BORE HOLE - Lid	
- Concrete Base			225.54	 Concrete Base 	
TB4 - Lid	209102.38	5742281.75	179.27	BORE HOLE - Lid	
- Concrete Base			178.75	- Concrete Base	
TB5 - Lid	207224.23	5741809.42	229.65	BORE HOLE - Lid	
- Concrete Base			229.10	- Concrete Base	
TB6 - Lid	205446.57	5741049.31	243.62	BORE HOLE - Lid	
- Concrete Base			243.05	 Concrete Base 	

TB7 - Lid	203872.08	5740074.33	224.93	BORE HOLE - Lid	
- Concrete Base			224.34	- Concrete Base	
TB8 - Lid	210574.73	5739808.33	151.82	BORE HOLE - Lid	
- Concrete Base			151.33	- Concrete Base	
TB9 - Lid	208632.06	5733485.31	156.70	BORE HOLE - Lid	
- Concrete Base			156.10	- Concrete Base	
TB10 - Lid	204874.07	5737769.70	216.05	BORE HOLE - Lid	
- Concrete Base			215.41	- Concrete Base	
TB11 - Lid	207199.32	5734761.65	134.74	BORE HOLE - Lid	
- Concrete Base			134.20	- Concrete Base	
TB12 - Lid	207614.66	5738133.12	172.98	BORE HOLE - Lid	
- Concrete Base			172.48	- Concrete Base	
TB13 - Lid	206081.77	5736874.88	189.42	BORE HOLE - Lid	
- Concrete Base			188.88	- Concrete Base	
UBCK1 - Lid	207366.64	5742476.83	217.91	BORE HOLE - Lid	
- Concrete Base			217.30	- Concrete Base	
UBCK2 - Lid	207391.33	5743149.29	194.10	BORE HOLE - Lid	
- Concrete Base			193.52	- Concrete Base	
UDVCK - Lid	207138.06	5739967.09	241.28	BORE HOLE - Lid	
- Concrete Base			240.80	- Concrete Base	

25 Bore Holes Located

All co-ordinates are to an accuracy of +/- 0.05m or better

Richard David Hockley Licensed Surveyor Surveying Act 2004

CLIENT: Go Drill Pty Ltd JOB: Boundary Creek Survey - Gerangamete DATE OF SURVEY: 12/08/2014 - 15/08/2014 & 22/08/2014 SURVEY METHOD: POST-PROCESSED GPS OBSERVATIONS USING BASE STATION & MELPOS NETWORK REAL TIME KINEMATIC GPS OBSERVATIONS COORDINATE SYSTEM: MGA ZONE55 LEVEL DATUM (HEIGHT): AHD

JOB REF: 1947-01 VERSION: 1

POINT ID	Easting	Northing	Height	Description	Reference
PM11	211756.14	5744387.86	232.63	PERMANENT MARK	
(PM11) ECC A	211749.05	5744369.87	232.38	PERMANENT MARK	
PM16	216872.69	5737249.34	164.86	PERMANENT MARK	
PM17	217156.03	5737237.86	164.26	PERMANENT MARK	
PM46	201432.32	5748635.13	142.47	PERMANENT MARK	
PM60(DATUM)	201642.24	5749461.84	138.14	PERMANENT MARK	DATUM
PM77	201468.87	5749480.45	137.26	PERMANENT MARK	
PM103	207830.82	5731818.61	232.30	PERMANENT MARK	
RM1 38 BROOK	206101.89	5738339.65	206.05	PERMANENT MARK	
BCS1 - Bottom	207391.64	5743204.25	187.35	Bottom of stream	
BCS1 - Top (west)	207388.80	5743205.23	188.34	Top of Bank (west)	
BCS1 - Top (east)	207396.45	5743205.83	189.23	Top of Bank (east)	
BCS1 - Water	207390.93	5743204.52	187.63	Current Water Level	
BCS2 - Bottom	209474.97	5744032.02	168.97	Bottom of Stream	
BCS2 - Top	209475.36	5744028.84	171.66	Top of Bank	
BCS2 - Water	209474.78	5744030.94	169.07	Current Water Level	
BCS3 - Bottom	209846.79	5744132.39	166.31	Bottom of Stream	
BCS3 - Top	209846.52	5744130.53	168.06	Top of Bank	
BCS3 - Water	209847.98	5744131.40	167.21	Current Water Level	
BCS4 - Bottom	210306.23	5743535.53	160.07	Bottom of Stream	
BCS4 - Top	210304.63	5743537.64	162.00	Top of Bank	
BCS4 - Water	210305.39	5743536.12	160.70	Current Water Level	
BCS4A - Bottom	210259.11	5743667.87	161.62	Bottom of Stream	
BCS4A - Top	210258.10	5743669.03	162.90	Top of Bank	
BCS4A - Water	210258.62	5743668.29	161.94	Current Water Level	
BCS5 - Bottom	210296.42	5743266.55	158.36	Bottom of Stream	
BCS5 - Top	210292.59	5743264.87	160.46	Top of Bank	
BCS5 - Water	210295.79	5743267.04	158.90	Current Water Level	
BCS6 - Bottom	210488.34	5742634.00	156.31	Bottom of Stream	
BCS6 - Top	210528.39	5742673.16	159.73	Top of Bank	
BCS6 - Water		NO WATER			
BCS7 - Bottom	210876.87	5742027.34	156.60	Bottom of Stream	
BCS7 - Top	210885.74	5742023.58	161.51	Top of Bank	
BCS7 - Water	210876.86	5742027.37	156.72	Current Water Level	
BCS8 - Bottom	212185.55	5742272.50	140.11	Bottom of Stream	
BCS8 - Top	212187.90	5742272.74	140.71	Top of Bank	
BCS8 - Water	212186.53	5742272.38	140.49	Current Water Level	
BSS1.B	211429.67	5742028.78	148.59	Swamp natural surface	elevel
BSS1A.B	211491.38	5742116.32	148.27	Swamp natural surface	elevel

1

BSS2.B	211553.94	5742180.45	147.42 Swamp natural surface level
BSS2A.B	212095.98	5742170.39	141.46 Swamp natural surface level

BCS = Boundary Creek Site BSS = Big Swamp Site

9 Boundary Creek Sites Surveyed 4 Big Swamp Sites Surveyed

All co-ordinates are to an accuracy of +/- 0.05m or better

Richard David Hockley Licensed Surveyor Surveying Act 2004

CLIENT: Go Drill Pty Ltd JOB: Gerangamete Area Borehole Survey & Tree water use study Survey DATE OF SURVEY: 13/04/2015 - 15/04/2015 & 21/04/2015 SURVEY METHOD: POST-PROCESSED GPS OBSERVATIONS USING BASE STATION & MELPOS NETWORK REAL TIME KINEMATIC GPS OBSERVATIONS COORDINATE SYSTEM: MGA ZONE55 LEVEL DATUM (HEIGHT): AHD

JOB REF: 1947-02 VERSION: 1

POINT ID	Easting	Northing	Height	Description	Reference
PM4	233850.81	5761850.05	105.23	PERMANENT MARK	
PM11	211756.15	5744387.82	232.62	PERMANENT MARK	
K PM17	229899.13	5760761.00	104.96	PERMANENT MARK	
B-D PM17	217156.03	5737237.83	164.23	PERMANENT MARK	
PM28	234040.03	5761723.74	106.65	PERMANENT MARK	
PM60	201642.25	5749461.86	138.15	PERMANENT MARK	
PM77	201468.88	5749480.46	137.26	PERMANENT MARK	DATUM
PM103	207830.86	<u>5731818.61</u>	232.29	PERMANENT MARK	
		PASS S	Sites		
PASS1 - Lid	214626.42	5742547.68	122.81	BORE HOLE - Lid	
- Concrete Base			122.20	- Concrete Base	
PASS2 - Lid	216082.27	5735798.86	137.45	BORE HOLE - Lid	
- Concrete Base			136.88	- Concrete Base	
PASS3 - Lid	214267.45	5743206.29	144.49	BORE HOLE - Lid	
- Concrete Base			143.89	- Concrete Base	
PASS4 - Lid	229173.02	5750021.16	138.14	BORE HOLE - Lid	
- Concrete Base			137.52	- Concrete Base	
		Bore S	ites		
TB14 - Lid	203063.62	5737656.17	141.87	BORE HOLE - Lid	
- Concrete Base			141.34	- Concrete Base	
A6A - Lid	208616.21	5737364.31	172.90	BORE HOLE - Lid	
- Concrete Base			171.52	- Concrete Base	
109136 - Lid	209563.01	5743713.71	176.81	BORE HOLE - Lid	
- Concrete Base			176.24	- Concrete Base	
	Т	ree water usag	e study site	es	
T1	211520.43	5742020.58	152.98	Push Tube Sample Loo	cation
T2	210820.15	5742221.80	153.21	Push Tube Sample Loo	cation
T4	209134.81	5742268.82	181.72	Push Tube Sample Lo	cation
T5	207202.43	5741892.13	219.47	Push Tube Sample Loo	cation
T6	205663.08	5741154.25	228.90	Push Tube Sample Lo	cation
T7	203853.46	5740065.76	223.06	Push Tube Sample Loo	cation
T8	210575.24	5739789.66	152.71	Push Tube Sample Lo	cation
T9	208715.41	5733509.80	155.73	Push Tube Sample Loo	cation
T10	204871.61	5737770.13	215.46	Push Tube Sample Lo	cation

T11	207276.20	5734570.25	140.54 Push Tube Sample Location
T12	207584.55	5738156.83	172.83 Push Tube Sample Location
T13	206104.44	5736851.40	189.02 Push Tube Sample Location
T14	203150.88	5737721.76	147.78 Push Tube Sample Location

4 PASS bore Holes Located

3 Bore Holes Located

13 Push Tube samples Located

All co-ordinates are to an accuracy of +/- 0.05m or better

Richard David Hockley Licensed Surveyor Surveying Act 2004

Appendix D. Specification provided to drilling contractor to reinstate existing bores

Barwon Downs bore field monitoring network upgrade:

Specifications for 3 bores to be reinstated and 1 bore chemically treated

In summary, the scope of works involves:

- Development of bores 109130, 109139 and 109143
- Fixing the headworks of Bore 109139 and 109143, which involves modifying the existing PVC casing and installing a steel lockable cover.
- Chemical dosing of bore 109131 (YEO40) which has tree roots in the screen. Redevelopment, a suitable time after dosing, is required.

Further details on the bores and scope of works is provided in the Table below.

Table 1 –	Summary	of information	regarding	the bores	and scop	e of works
	Summury	or information	regurang	110 00103	una scop	

Bore	Location, Year installed,	Status / notes based on 26	Scope of works
ID(Alternate	Screen / TD, WL monitoring	February & 7 March 2014 site	
ID)	history	assessments	
109139	 Approx.100m upstream of McDonalds dam. Installed 1987 Sc: 7 – 10m, TD: 11m 50mm, PVC Last monitored 1988 	Bore casing broken 10cm above ground surface; 50mm diameter PVC casing Bore behind fencing (no vehicle access), and soon to be overgrown with blackberries Measured depth: 9.35m bTOC; 9.25m bgl SWL: 6.79m bTOC; 6.69m bgl CCTV inspection completed 7 March 2014: Sc: unknown, but below SWL Casing above SWL in good condition with some staining Water too turbid to see casing/screen below SWL	 Develop the bore for 30-60 minutes using airlift techniques (or hand bailing if airlifting does not work) Add 500mm to existing PVC casing, and cement in a lockable steel standpipe Install a painted pine marker post adjacent bore in order to assist in finding / protecting the bore Note: Bore is approximately 20m inside a fence-line (with no vehicle access) and additional hosing to reach the bore for redevelopment will be required.
	00100	GPS location: /33/84E; 5/45960N	required.
			Duraliza the bare for 20 (0 minutes
109130 (YEO39)	 Approx. 100m d'stream of McDonalds dam, east side Boundary Ck Installed 1970 Sc: 8 – 15.5m, TD: 17.5m 	Blue SOBN-style locked monument cover over an estimated 50mm diameter PVC casing (too deep to be measured); surface casing in good condition Vehicle access to bore (gate off road)	 Develop the bore for 30-60 minutes using airlift techniques (or hand bailing if airlifting does not work) to remove sediment from screens

	• 50mm, PVC	Measured depth: 14.83m bTOC; 14.095m	
	Para has been monitored since	bgl SWL - ~11 98m bTOC: ~11 245m bol	
	1986, however there is only one		
	water level reading since November 2010 (in August 2012) – refer	CCTV inspection completed 7 March 2014 (bore unlocked for visit by BW):	
	hydrograph at end of this file note	• Sc: 9.2 – 14.83m bTOC, TD: 14.83m;	
		 SWL in screen Screen continues to measured depth: 	
		sump and ~1.5m screen covered with	
		 Casing in above SWL in good condition 	
		Water fairly clear, with some fines Some deposite on screen ledges: 20	
		50% screens blocked	
		GPS location: 734183E: 5745396N	
Photograph –	109130 (YEO39)		
109143	 Approx. 200m d'stream of McDonalds dam, west side Installed 1987 Sc: 11.5 – 17.5m, TD: 24m 50mm, PVC Last monitored 1989 	Bore casings total 1175mm above ground surface; surface casing (120mm diameter PVC) to 355mm above ground surface; inner casing (50mm diameter PVC) to total height; open casing (no cap) Bore around 4m behind fencing (no vehicle access) Measured depth: 23.42m bTOC; 22.245m bgl SWL: 10.695m bTOC; 9.52m bgl CCTV inspection completed 7 March 2014: Sc: ~14m - ~19.5m bTOC Casing in good condition, but difficult to see below SWL Some plastic (?) suspended in bore Water turbid with many fines; screen v minor slotting and difficult to see (only on side view CCTV) No obvious blocking of screens GPS location: 734169E; 5745223N	 Develop the bore for 30-60 minutes using airlift techniques (or hand bailing if airlifting does not work) Cut around 500mm off existing PVC casing, and cement in a lockable steel standpipe Install a painted pine marker post adjacent bore in order to assist in finding / protecting the bore
Photograph - 1	09143	1	
109131 (YEO40)	 Approx. 700m d'stream of McDonalds dam, ~ 200m east of Boundary Ck Installed 1986 Sc: 11 – 17m, T.D.: 87m (this is depth listed in GMS, but this is drilled depth, not constructed depth) 150mm, Mild Steel Last monitored 2007 but I think this is not the latest – i.e. not from replacement bore. Barwon Water have indicated that the bore has been either fixed or replaced. (Email from Jo Lee on 5.2.14 lists this as one of the bores Barwon Water is currently monitoring) 	 Blue SOBN-style locked monument cover over an estimated 100mm diameter PVC casing; surface casing in good condition (630mm height; on raised concrete pad (+6mm)) ID of "Yeo40" on bore Vehicle access to bore (gate off road; through paddock) Measured depth: 23.2m bTOC; 23.89m bgl SWL: 16.2m bTOC; 16.89m bgl CCTV inspection completed 7 March 2014 (bore unlocked for visit by BW): Sc: ~13 – ~22m bTOC; SWL in screen Sump casing visible to measured depth Casing in good condition, however many rootlets coming into bore through slotted screen; most roots below SWL but some above Bore not blocked (camera not impeded), but rootlets becoming medium density (with potential for further growth) Water slightly turbid, with many fines GPS location: 734183E; 5745396N 	 Chemical dosing of the bore to kill tree roots (contractor to indicate the chemical agent to be used) The bore is then to be left for a suitable period of time (minimum as per chemical agent instructions) – in order for chemical dosing to take effect, prior to bore re-development Develop the bore for 30- 60 minutes using airlift techniques (or hand bailing if airlifting does not work) Depending on chemical used for dosing, the development water may need to be collected and disposed off-site.
-------------------	---	--	---

Appendix E. Gamma logs of existing bores

Appendix F. Slug Test Results

